hipom_data_mapping/train/class_number_tokens/classification_prediction/predict.py

290 lines
8.4 KiB
Python
Raw Normal View History

# %%
# from datasets import load_from_disk
import os
import glob
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import torch
from torch.utils.data import DataLoader
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
)
import evaluate
import re
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
from tqdm import tqdm
torch.set_float32_matmul_precision('high')
BATCH_SIZE = 128
# %%
# we need to create the mdm_list
# import the full mdm-only file
data_path = '../../../data_import/exports/data_mapping_mdm.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
# mdm_list = sorted(list((set(full_df['pattern']))))
thing_property = full_df['thing'] + full_df['property']
thing_property = thing_property.to_list()
mdm_list = sorted(list(set(thing_property)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(mdm_list):
id2label[idx] = val
label2id[val] = idx
# %%
def substitute_and_append_digits(s):
"""
Finds all digit groups in a string, substitutes them with a <digit> placeholder,
and appends the extracted digit groups at the end of the string flanked by <digit> markers.
Args:
s (str): The input string.
Returns:
str: The transformed string.
"""
# Find all digit groups in the string
digit_groups = re.findall(r'\d+', s)
# Substitute digit groups with <digit> placeholder
substituted_string = re.sub(r'\d+', '<DIGIT>', s)
# Append extracted digit groups to the end of the string
appended_digits = ''.join([f'<DIGIT>{group}<DIGIT>' for group in digit_groups])
return substituted_string + appended_digits
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df, mdm_list):
output_list = []
for _, row in df.iterrows():
processed_desc = substitute_and_append_digits(row['tag_description'])
desc = f"<DESC>{processed_desc}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
pattern = f"{row['thing'] + row['property']}"
try:
index = mdm_list.index(pattern)
except ValueError:
index = -1
element = {
'text' : f"{desc}{unit}",
'label': index,
}
output_list.append(element)
return output_list
def create_dataset(fold, mdm_list):
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
test_df = pd.read_csv(data_path, skipinitialspace=True)
# uncomment for mdm
# we only use the mdm subset
test_df = test_df[test_df['MDM']].reset_index(drop=True)
test_dataset = Dataset.from_list(process_df_to_dict(test_df, mdm_list))
return test_dataset
# %%
# function to perform training for a given fold
def test(fold):
test_dataset = create_dataset(fold, mdm_list)
# prepare tokenizer
checkpoint_directory = f'../checkpoint_fold_{fold}'
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<DESC>", "<UNIT>", "<DIGIT>"]
# Add the additional special tokens to the tokenizer
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
# %%
# compute max token length
max_length = 0
for sample in test_dataset['text']:
# Tokenize the sample and get the length
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
length = len(input_ids)
# Update max_length if this sample is longer
if length > max_length:
max_length = length
print(max_length)
# %%
max_length = 128
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
max_length=max_length,
# truncation=True,
padding='max_length'
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
# %% temp
# tokenized_datasets['train'].rename_columns()
# %%
# create data collator
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
# %%
# compute metrics
# metric = evaluate.load("accuracy")
#
#
# def compute_metrics(eval_preds):
# preds, labels = eval_preds
# preds = np.argmax(preds, axis=1)
# return metric.compute(predictions=preds, references=labels)
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(mdm_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
model = model.eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
pred_labels = []
actual_labels = []
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
for batch in tqdm(dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
actual_labels.extend(batch['label'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Perform inference
with torch.no_grad():
logits = model(
input_ids,
attention_mask).logits
predicted_class_ids = logits.argmax(dim=1).to("cpu")
pred_labels.extend(predicted_class_ids)
pred_labels = [tensor.item() for tensor in pred_labels]
# %%
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
y_true = actual_labels
y_pred = pred_labels
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
average_parameter = 'weighted'
zero_division_parameter = 0
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
with open("output.txt", "a") as f:
print('*' * 80, file=f)
print(f'Fold: {fold}', file=f)
# Print the results
print(f'Accuracy: {accuracy:.5f}', file=f)
print(f'F1 Score: {f1:.5f}', file=f)
print(f'Precision: {precision:.5f}', file=f)
print(f'Recall: {recall:.5f}', file=f)
# export result
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
df = pd.read_csv(data_path, skipinitialspace=True)
# uncomment if you want to predict for all
# df = df[df['MDM']].reset_index(drop=True)
label_list = [id2label[id] for id in pred_labels]
df_out = pd.DataFrame({
'class_prediction': pd.Series(label_list)
})
df = pd.concat([df, df_out], axis=1)
# we can save the t5 generation output here
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
# %%
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
for fold in [1,2,3,4,5]:
test(fold)