hipom_data_mapping/relevant_class/binary_classifier_desc/train.py

219 lines
6.0 KiB
Python
Raw Normal View History

# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# %%
# we need to create the mdm_list
# import the full mdm-only file
# data_path = '../../data_import/exports/data_mapping_mdm.csv'
# full_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
# %%
id2label = {0: False, 1: True}
label2id = {False: 0, True: 1}
# %%
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
in_mdm_label = int(row['MDM'])
element = {
'text' : f"{desc}",
'label': in_mdm_label,
}
output_list.append(element)
return output_list
def create_split_dataset(fold):
# train
# data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
# reconstruct full training data with non-mdm data
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
test_df = pd.read_csv(data_path, skipinitialspace=True)
ships_list = list(set(test_df['ships_idx']))
data_path = '../../data_preprocess/exports/preprocessed_data.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
train_df = full_df[~full_df['ships_idx'].isin(ships_list)]
train_ships_list = sorted(list(set(train_df['ships_idx'])))
train_ships_set = set(train_ships_list)
test_ships_set = set(ships_list)
# assertion for non data leakage
assert not set(train_ships_set).intersection(test_ships_set)
# valid
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
validation_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df)),
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
})
return combined_data
# %%
# function to perform training for a given fold
def train(fold):
save_path = f'checkpoint_fold_{fold}'
split_datasets = create_split_dataset(fold)
# prepare tokenizer
model_checkpoint = "distilbert/distilbert-base-cased"
# model_checkpoint = 'google-bert/bert-base-cased'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
max_length = 120
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
max_length=max_length,
truncation=True,
padding=True
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
# %% temp
# tokenized_datasets['train'].rename_columns()
# %%
# create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# %%
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
# create id2label and label2id
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=2)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=1e-5,
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=80,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
for fold in [1,2,3,4,5]:
print(fold)
train(fold)
# %%