186 lines
7.7 KiB
Python
186 lines
7.7 KiB
Python
# stardard functionalities for computing triplet loss, borrow code from
|
|
# https://github.com/NegatioN/OnlineMiningTripletLoss/blob/master/online_triplet_loss/losses.py
|
|
import torch
|
|
import torch.nn.functional as F
|
|
def _pairwise_distances(embeddings, squared=False):
|
|
"""Compute the 2D matrix of distances between all the embeddings.
|
|
Args:
|
|
embeddings: tensor of shape (batch_size, embed_dim)
|
|
squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
|
|
If false, output is the pairwise euclidean distance matrix.
|
|
Returns:
|
|
pairwise_distances: tensor of shape (batch_size, batch_size)
|
|
"""
|
|
dot_product = torch.matmul(embeddings, embeddings.t())
|
|
|
|
# Get squared L2 norm for each embedding. We can just take the diagonal of `dot_product`.
|
|
# This also provides more numerical stability (the diagonal of the result will be exactly 0).
|
|
# shape (batch_size,)
|
|
square_norm = torch.diag(dot_product)
|
|
|
|
# Compute the pairwise distance matrix as we have:
|
|
# ||a - b||^2 = ||a||^2 - 2 <a, b> + ||b||^2
|
|
# shape (batch_size, batch_size)
|
|
distances = square_norm.unsqueeze(0) - 2.0 * dot_product + square_norm.unsqueeze(1)
|
|
|
|
# Because of computation errors, some distances might be negative so we put everything >= 0.0
|
|
distances[distances < 0] = 0
|
|
|
|
if not squared:
|
|
# Because the gradient of sqrt is infinite when distances == 0.0 (ex: on the diagonal)
|
|
# we need to add a small epsilon where distances == 0.0
|
|
mask = distances.eq(0).float()
|
|
distances = distances + mask * 1e-16
|
|
|
|
distances = (1.0 -mask) * torch.sqrt(distances)
|
|
|
|
return distances
|
|
|
|
def _get_triplet_mask(labels):
|
|
"""Return a 3D mask where mask[a, p, n] is True iff the triplet (a, p, n) is valid.
|
|
A triplet (i, j, k) is valid if:
|
|
- i, j, k are distinct
|
|
- labels[i] == labels[j] and labels[i] != labels[k]
|
|
Args:
|
|
labels: tf.int32 `Tensor` with shape [batch_size]
|
|
"""
|
|
# Check that i, j and k are distinct
|
|
indices_equal = torch.eye(labels.size(0), device=labels.device).bool()
|
|
indices_not_equal = ~indices_equal
|
|
i_not_equal_j = indices_not_equal.unsqueeze(2)
|
|
i_not_equal_k = indices_not_equal.unsqueeze(1)
|
|
j_not_equal_k = indices_not_equal.unsqueeze(0)
|
|
|
|
distinct_indices = (i_not_equal_j & i_not_equal_k) & j_not_equal_k
|
|
|
|
|
|
label_equal = labels.unsqueeze(0) == labels.unsqueeze(1)
|
|
i_equal_j = label_equal.unsqueeze(2)
|
|
i_equal_k = label_equal.unsqueeze(1)
|
|
|
|
valid_labels = ~i_equal_k & i_equal_j
|
|
|
|
return valid_labels & distinct_indices
|
|
|
|
|
|
def _get_anchor_positive_triplet_mask(labels):
|
|
"""Return a 2D mask where mask[a, p] is True iff a and p are distinct and have same label.
|
|
Args:
|
|
labels: tf.int32 `Tensor` with shape [batch_size]
|
|
Returns:
|
|
mask: tf.bool `Tensor` with shape [batch_size, batch_size]
|
|
"""
|
|
# Check that i and j are distinct
|
|
indices_equal = torch.eye(labels.size(0), device=labels.device).bool()
|
|
indices_not_equal = ~indices_equal
|
|
|
|
# Check if labels[i] == labels[j]
|
|
# Uses broadcasting where the 1st argument has shape (1, batch_size) and the 2nd (batch_size, 1)
|
|
labels_equal = labels.unsqueeze(0) == labels.unsqueeze(1)
|
|
|
|
return labels_equal & indices_not_equal
|
|
|
|
|
|
def _get_anchor_negative_triplet_mask(labels):
|
|
"""Return a 2D mask where mask[a, n] is True iff a and n have distinct labels.
|
|
Args:
|
|
labels: tf.int32 `Tensor` with shape [batch_size]
|
|
Returns:
|
|
mask: tf.bool `Tensor` with shape [batch_size, batch_size]
|
|
"""
|
|
# Check if labels[i] != labels[k]
|
|
# Uses broadcasting where the 1st argument has shape (1, batch_size) and the 2nd (batch_size, 1)
|
|
|
|
return ~(labels.unsqueeze(0) == labels.unsqueeze(1))
|
|
|
|
|
|
# Cell
|
|
def batch_hard_triplet_loss(labels, embeddings, margin, squared=False):
|
|
"""Build the triplet loss over a batch of embeddings.
|
|
For each anchor, we get the hardest positive and hardest negative to form a triplet.
|
|
Args:
|
|
labels: labels of the batch, of size (batch_size,)
|
|
embeddings: tensor of shape (batch_size, embed_dim)
|
|
margin: margin for triplet loss
|
|
squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
|
|
If false, output is the pairwise euclidean distance matrix.
|
|
Returns:
|
|
triplet_loss: scalar tensor containing the triplet loss
|
|
"""
|
|
# Get the pairwise distance matrix
|
|
pairwise_dist = _pairwise_distances(embeddings, squared=squared)
|
|
|
|
# For each anchor, get the hardest positive
|
|
# First, we need to get a mask for every valid positive (they should have same label)
|
|
mask_anchor_positive = _get_anchor_positive_triplet_mask(labels).float()
|
|
|
|
# We put to 0 any element where (a, p) is not valid (valid if a != p and label(a) == label(p))
|
|
anchor_positive_dist = mask_anchor_positive * pairwise_dist
|
|
|
|
# shape (batch_size, 1)
|
|
hardest_positive_dist, _ = anchor_positive_dist.max(1, keepdim=True)
|
|
|
|
# For each anchor, get the hardest negative
|
|
# First, we need to get a mask for every valid negative (they should have different labels)
|
|
mask_anchor_negative = _get_anchor_negative_triplet_mask(labels).float()
|
|
|
|
# We add the maximum value in each row to the invalid negatives (label(a) == label(n))
|
|
max_anchor_negative_dist, _ = pairwise_dist.max(1, keepdim=True)
|
|
anchor_negative_dist = pairwise_dist + max_anchor_negative_dist * (1.0 - mask_anchor_negative)
|
|
|
|
# shape (batch_size,)
|
|
hardest_negative_dist, _ = anchor_negative_dist.min(1, keepdim=True)
|
|
|
|
# Combine biggest d(a, p) and smallest d(a, n) into final triplet loss
|
|
tl = hardest_positive_dist - hardest_negative_dist + margin
|
|
tl = F.relu(tl)
|
|
triplet_loss = tl.mean()
|
|
|
|
return triplet_loss
|
|
|
|
# Cell
|
|
def batch_all_triplet_loss(labels, embeddings, margin, squared=False):
|
|
"""Build the triplet loss over a batch of embeddings.
|
|
We generate all the valid triplets and average the loss over the positive ones.
|
|
Args:
|
|
labels: labels of the batch, of size (batch_size,)
|
|
embeddings: tensor of shape (batch_size, embed_dim)
|
|
margin: margin for triplet loss
|
|
squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
|
|
If false, output is the pairwise euclidean distance matrix.
|
|
Returns:
|
|
triplet_loss: scalar tensor containing the triplet loss
|
|
"""
|
|
# Get the pairwise distance matrix
|
|
pairwise_dist = _pairwise_distances(embeddings, squared=squared)
|
|
|
|
anchor_positive_dist = pairwise_dist.unsqueeze(2)
|
|
anchor_negative_dist = pairwise_dist.unsqueeze(1)
|
|
|
|
# Compute a 3D tensor of size (batch_size, batch_size, batch_size)
|
|
# triplet_loss[i, j, k] will contain the triplet loss of anchor=i, positive=j, negative=k
|
|
# Uses broadcasting where the 1st argument has shape (batch_size, batch_size, 1)
|
|
# and the 2nd (batch_size, 1, batch_size)
|
|
triplet_loss = anchor_positive_dist - anchor_negative_dist + margin
|
|
|
|
|
|
|
|
# Put to zero the invalid triplets
|
|
# (where label(a) != label(p) or label(n) == label(a) or a == p)
|
|
mask = _get_triplet_mask(labels)
|
|
triplet_loss = mask.float() * triplet_loss
|
|
|
|
# Remove negative losses (i.e. the easy triplets)
|
|
triplet_loss = F.relu(triplet_loss)
|
|
|
|
# Count number of positive triplets (where triplet_loss > 0)
|
|
valid_triplets = triplet_loss[triplet_loss > 1e-16]
|
|
num_positive_triplets = valid_triplets.size(0)
|
|
num_valid_triplets = mask.sum()
|
|
|
|
fraction_positive_triplets = num_positive_triplets / (num_valid_triplets.float() + 1e-16)
|
|
|
|
# Get final mean triplet loss over the positive valid triplets
|
|
triplet_loss = triplet_loss.sum() / (num_positive_triplets + 1e-16)
|
|
|
|
return triplet_loss, fraction_positive_triplets |