93 lines
3.6 KiB
Python
93 lines
3.6 KiB
Python
# %%
|
|
import torch
|
|
import json
|
|
import random
|
|
import numpy as np
|
|
from transformers import AutoTokenizer
|
|
from transformers import AutoModel
|
|
from loss import batch_all_triplet_loss, batch_hard_triplet_loss
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
from tqdm import tqdm
|
|
|
|
|
|
# %%
|
|
def generate_train_entity_sets(entity_id_mentions, entity_id_name, group_size, anchor=True):
|
|
# split entity mentions into groups
|
|
# anchor = False, don't add entity name to each group, simply treat it as a normal mention
|
|
entity_sets = []
|
|
if anchor:
|
|
for id, mentions in entity_id_mentions.items():
|
|
random.shuffle(mentions)
|
|
positives = [mentions[i:i + group_size] for i in range(0, len(mentions), group_size)]
|
|
anchor_positive = [([entity_id_name[id]]+p, id) for p in positives]
|
|
entity_sets.extend(anchor_positive)
|
|
else:
|
|
for id, mentions in entity_id_mentions.items():
|
|
group = list(set([entity_id_name[id]] + mentions))
|
|
random.shuffle(group)
|
|
positives = [(mentions[i:i + group_size], id) for i in range(0, len(mentions), group_size)]
|
|
entity_sets.extend(positives)
|
|
return entity_sets
|
|
|
|
def batchGenerator(data, batch_size):
|
|
for i in range(0, len(data), batch_size):
|
|
batch = data[i:i+batch_size]
|
|
x, y = [], []
|
|
for t in batch:
|
|
x.extend(t[0])
|
|
y.extend([t[1]]*len(t[0]))
|
|
yield x, y
|
|
|
|
|
|
with open('../esAppMod/tca_entities.json', 'r') as file:
|
|
entities = json.load(file)
|
|
all_entity_id_name = {entity['entity_id']: entity['entity_name'] for _, entity in entities['data'].items()}
|
|
|
|
with open('../esAppMod/train.json', 'r') as file:
|
|
train = json.load(file)
|
|
train_entity_id_mentions = {data['entity_id']: data['mentions'] for _, data in train['data'].items()}
|
|
train_entity_id_name = {data['entity_id']: all_entity_id_name[data['entity_id']] for _, data in train['data'].items()}
|
|
|
|
|
|
num_sample_per_class = 10 # samples in each group
|
|
batch_size = 16 # number of groups, effective batch_size for computing triplet loss = batch_size * num_sample_per_class
|
|
margin = 2
|
|
epochs = 200
|
|
DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
|
# MODEL_NAME = 'distilbert-base-cased' #'prajjwal1/bert-small' #'bert-base-cased'
|
|
MODEL_NAME = 'prajjwal1/bert-small' # 'prajjwal1/bert-small' 'bert-base-cased' 'distilbert-base-cased'
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
model = AutoModel.from_pretrained(MODEL_NAME)
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-5)
|
|
|
|
model.to(DEVICE)
|
|
model.train()
|
|
|
|
losses = []
|
|
|
|
for epoch in tqdm(range(epochs)):
|
|
data = generate_train_entity_sets(train_entity_id_mentions, train_entity_id_name, num_sample_per_class-1, anchor=True)
|
|
random.shuffle(data)
|
|
for x, y in batchGenerator(data, batch_size):
|
|
# print(len(x), len(y), end='-->')
|
|
optimizer.zero_grad()
|
|
inputs = tokenizer(x, padding=True, return_tensors='pt')
|
|
inputs = inputs.to(DEVICE)
|
|
outputs = model(**inputs)
|
|
cls = outputs.last_hidden_state[:,0,:]
|
|
# for training less than half the time, train on easy
|
|
if epoch < epochs / 2:
|
|
loss, _ = batch_all_triplet_loss(torch.tensor(y).to(DEVICE), cls, margin, squared=False)
|
|
# for training after half the time, train on hard
|
|
else:
|
|
loss = batch_hard_triplet_loss(torch.tensor(y).to(DEVICE), cls, margin, squared=False)
|
|
loss.backward()
|
|
optimizer.step()
|
|
# print(epoch, loss)
|
|
losses.append(loss)
|
|
del inputs, outputs, cls, loss
|
|
torch.cuda.empty_cache()
|
|
|
|
torch.save(model.state_dict(), './checkpoint/siamese_simple.pt')
|