domain_mapping/reference_code/dataload_with_augmentation.py

228 lines
6.2 KiB
Python

# this code performs dataloading with text augmentation
# %%
from torch.utils.data import Dataset, DataLoader
import pandas as pd
import torch
from transformers import (
AutoTokenizer,
)
from functools import partial
import re
import random
# %%
# PARAMETERS
SAMPLES=5
# %%
###################################################
# import code
# import training file
data_path = '../esAppMod_data_import/train.csv'
df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
df["training_id"] = df["entity_id"].map(label2id)
# %%
##############################################################
# augmentation code
# basic preprocessing
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
def shuffle_text(text, prob=0.2):
if random.random() < prob:
words = text.split() # Split the input into words
shuffled = words[:] # Copy the word list to avoid in-place modification
random.shuffle(shuffled) # Randomly shuffle the words
shuffled_text = " ".join(shuffled) # Join the words back into a string
else:
shuffled_text = text
return shuffled_text
def corrupt_word(word):
"""Corrupt a single word using random corruption techniques."""
if len(word) <= 1: # Skip corruption for single-character words
return word
corruption_type = random.choice(["delete", "swap"])
if corruption_type == "delete":
# Randomly delete a character
idx = random.randint(0, len(word) - 1)
word = word[:idx] + word[idx + 1:]
elif corruption_type == "swap":
# Swap two adjacent characters
if len(word) > 1:
idx = random.randint(0, len(word) - 2)
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
return word
def corrupt_text(sentence, prob=0.05):
"""Corrupt each word in the string with a given probability."""
words = sentence.split()
corrupted_words = [
corrupt_word(word) if random.random() < prob else word
for word in words
]
return " ".join(corrupted_words)
def strip_nonalphanumerics(desc, prob=0.5):
desc = re.sub(r'[^\w\s]', ' ', desc) # Retains only alphanumeric and spaces
return desc
# %%
def augment(row):
"""
function to augment "mention" string input
returns the string input with slight variation
"""
desc = row['mention']
# we always apply preprocess
desc = preprocess_text(desc)
desc = shuffle_text(desc, prob=0.5)
desc = corrupt_text(desc, prob=0.5)
desc = strip_nonalphanumerics(desc, prob=0.5)
return desc
# %%
# custom dataset
# we want to sample n samples from each class
# sample_size refers to the number of samples per class
def sample_from_df(df, sample_size_per_class=5):
sampled_df = (df.groupby( "training_id")[['training_id', 'mention']] # explicit give column names
.apply(lambda x: x.sample(n=min(sample_size_per_class, len(x))))
.reset_index(drop=True))
return sampled_df
# %%
class DynamicDataset(Dataset):
def __init__(self, df, sample_size_per_class):
"""
Args:
df (pd.DataFrame): Original DataFrame with class (id) and data columns.
sample_size_per_class (int): Number of samples to draw per class for each epoch.
"""
self.df = df
self.sample_size_per_class = sample_size_per_class
self.current_data = None
self.regenerate_data() # Generate the initial dataset
def regenerate_data(self):
"""
Generate a new sampled dataset for the current epoch.
dynamic callback function to regenerate data each time we call this
method, it updates the current_data we can:
- re-sample the dataframe for a new set of n_samples
- generate fresh augmentations this effectively
This allows us to re-sample and re-augment at the start of each epoch
"""
# Sample `sample_size_per_class` rows per class
sampled_df = sample_from_df(self.df, self.sample_size_per_class)
# Store the tokenized data with labels
self.current_data = sampled_df
def __len__(self):
return len(self.current_data)
def __getitem__(self, idx):
# do the transform here
row = self.current_data.iloc[idx].to_dict()
# perform text augmentation here
# independent function calls might introduce changes
mention_0 = augment(row)
mention_1 = augment(row)
return {
'training_id': row['training_id'],
'mention_0': mention_0,
'mention_1': mention_1,
}
# %%
dataset = DynamicDataset(df, sample_size_per_class=SAMPLES)
dataset[0]
# %%
def custom_collate_fn(batch, tokenizer):
# batch is just a list of dictionaries
label_list = [item['training_id'] for item in batch]
mention_0_list = [item['mention_0'] for item in batch]
mention_1_list = [item['mention_1'] for item in batch]
# we can do the tokenization here
tokenized_batch_0 = tokenizer(
mention_0_list,
truncation=True,
padding=True,
return_tensors='pt'
)
tokenized_batch_1 = tokenizer(
mention_1_list,
truncation=True,
padding=True,
return_tensors='pt'
)
label_list = torch.tensor(label_list)
return {
'input_ids_0': tokenized_batch_0['input_ids'],
'attention_mask_0': tokenized_batch_0['attention_mask'],
'input_ids_1': tokenized_batch_1['input_ids'],
'attention_mask_1': tokenized_batch_1['attention_mask'],
'labels': label_list,
}
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", clean_up_tokenization_spaces=False)
custom_collate_fn_with_tokenizer = partial(custom_collate_fn, tokenizer=tokenizer)
dataloader = DataLoader(
dataset,
batch_size=8,
collate_fn=custom_collate_fn_with_tokenizer
)
# %%
next(iter(dataloader))
# %%