domain_mapping/cosines_with_augmentations/esAppMod_train_with_classif...

306 lines
10 KiB
Python

# %%
import torch
import json
import random
import numpy as np
from transformers import AutoTokenizer
from transformers import AutoModel
from loss import batch_all_triplet_loss, batch_hard_triplet_loss
from sklearn.neighbors import KNeighborsClassifier
from tqdm import tqdm
import pandas as pd
import re
from torch.utils.data import Dataset, DataLoader
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
# %%
SHUFFLES=0
AMPLIFY_FACTOR=2
LEARNING_RATE=1e-5
# %%
def generate_train_entity_sets(entity_id_mentions, entity_id_name, group_size, anchor=True):
# split entity mentions into groups
# anchor = False, don't add entity name to each group, simply treat it as a normal mention
entity_sets = []
if anchor:
for id, mentions in entity_id_mentions.items():
random.shuffle(mentions)
positives = [mentions[i:i + group_size] for i in range(0, len(mentions), group_size)]
anchor_positive = [([entity_id_name[id]]+p, id) for p in positives]
entity_sets.extend(anchor_positive)
else:
for id, mentions in entity_id_mentions.items():
group = list(set([entity_id_name[id]] + mentions))
random.shuffle(group)
positives = [(mentions[i:i + group_size], id) for i in range(0, len(mentions), group_size)]
entity_sets.extend(positives)
return entity_sets
def batchGenerator(data, batch_size):
for i in range(0, len(data), batch_size):
batch = data[i:i+batch_size]
x, y = [], []
for t in batch:
x.extend(t[0])
y.extend([t[1]]*len(t[0]))
yield x, y
with open('../esAppMod/tca_entities.json', 'r') as file:
entities = json.load(file)
all_entity_id_name = {entity['entity_id']: entity['entity_name'] for _, entity in entities['data'].items()}
with open('../esAppMod/train.json', 'r') as file:
train = json.load(file)
train_entity_id_mentions = {data['entity_id']: data['mentions'] for _, data in train['data'].items()}
train_entity_id_name = {data['entity_id']: all_entity_id_name[data['entity_id']] for _, data in train['data'].items()}
# %%
###############
# alternate data import strategy
###################################################
# import code
# import training file
data_path = '../esAppMod_data_import/train.csv'
df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
df["training_id"] = df["entity_id"].map(label2id)
# %%
##############################################################
# augmentation code
# basic preprocessing
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
def generate_random_shuffles(text, n):
words = text.split() # Split the input into words
shuffled_variations = []
for _ in range(n):
shuffled = words[:] # Copy the word list to avoid in-place modification
random.shuffle(shuffled) # Randomly shuffle the words
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
return shuffled_variations
def shuffle_text(text, n_shuffles=SHUFFLES):
all_processed = []
# add the original text
all_processed.append(text)
# Generate random shuffles
shuffled_variations = generate_random_shuffles(text, n_shuffles)
all_processed.extend(shuffled_variations)
return all_processed
def corrupt_word(word):
"""Corrupt a single word using random corruption techniques."""
if len(word) <= 1: # Skip corruption for single-character words
return word
corruption_type = random.choice(["delete", "swap"])
if corruption_type == "delete":
# Randomly delete a character
idx = random.randint(0, len(word) - 1)
word = word[:idx] + word[idx + 1:]
elif corruption_type == "swap":
# Swap two adjacent characters
if len(word) > 1:
idx = random.randint(0, len(word) - 2)
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
return word
def corrupt_string(sentence, corruption_probability=0.01):
"""Corrupt each word in the string with a given probability."""
words = sentence.split()
corrupted_words = [
corrupt_word(word) if random.random() < corruption_probability else word
for word in words
]
return " ".join(corrupted_words)
def create_example(index, mention, entity_name):
return {'entity_id': index, 'mention': mention, 'entity_name': entity_name}
# augment whole dataset
def augment_data(df):
output_list = []
for idx,row in df.iterrows():
index = row['entity_id']
entity_name = row['entity_name']
parent_desc = row['mention']
parent_desc = preprocess_text(parent_desc)
# add basic example
output_list.append(create_example(index, parent_desc, entity_name))
# add shuffled strings
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
for desc in processed_descs:
if (desc != parent_desc):
output_list.append(create_example(index, desc, entity_name))
# add corrupted strings
desc = corrupt_string(parent_desc, corruption_probability=0.01)
if (desc != parent_desc):
output_list.append(create_example(index, desc, entity_name))
# add example with stripped non-alphanumerics
desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
if (desc != parent_desc):
output_list.append(create_example(index, desc, entity_name))
# short sequence amplifier
# short sequences are rare, and we must compensate by including more examples
# also, short sequence don't usually get affected by shuffle
words = parent_desc.split()
word_count = len(words)
if word_count <= 2:
for _ in range(AMPLIFY_FACTOR):
output_list.append(create_example(index, desc, entity_name))
new_df = pd.DataFrame(output_list)
return new_df
# %%
def make_entity_id_mentions(df):
entity_id_mentions = {}
entity_id_list = list(set(df['entity_id']))
for entity_id in entity_id_list:
entity_id_mentions[entity_id] = df[df['entity_id']==entity_id]['mention'].to_list()
return entity_id_mentions
def make_entity_id_name(df):
entity_id_name = {}
entity_id_list = list(set(df['entity_id']))
for entity_id in entity_id_list:
# entity_id always matches entity_name, so first value would work
entity_id_name[entity_id] = df[df['entity_id']==entity_id]['entity_name'].to_list()[0]
return entity_id_name
# %%
num_sample_per_class = 10 # samples in each group
batch_size = 16 # number of groups, effective batch_size for computing triplet loss = batch_size * num_sample_per_class
margin = 2
epochs = 200
DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# MODEL_NAME = 'distilbert-base-cased' #'prajjwal1/bert-small' #'bert-base-cased'
MODEL_NAME = 'prajjwal1/bert-small' # 'prajjwal1/bert-small' 'bert-base-cased' 'distilbert-base-cased'
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
bert_model = AutoModel.from_pretrained(MODEL_NAME)
class BertForClassificationAndTriplet(nn.Module):
def __init__(self, bert_model, num_classes):
super().__init__()
self.bert = bert_model
self.classifier = nn.Linear(bert_model.config.hidden_size, num_classes)
def forward(self, input_ids, attention_mask=None):
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
cls_embeddings = outputs.last_hidden_state[:, 0, :] # CLS token
logits = self.classifier(cls_embeddings)
return cls_embeddings, logits
model = BertForClassificationAndTriplet(bert_model, num_classes=len(label2id))
optimizer = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE)
# scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
model.to(DEVICE)
model.train()
losses = []
for epoch in tqdm(range(epochs)):
total_loss = 0.0
batch_number = 0
augmented_df = augment_data(df)
train_entity_id_mentions = make_entity_id_mentions(augmented_df)
train_entity_id_name = make_entity_id_name(augmented_df)
data = generate_train_entity_sets(train_entity_id_mentions, train_entity_id_name, num_sample_per_class-1, anchor=True)
random.shuffle(data)
for x,y in batchGenerator(data, batch_size):
# print(len(x), len(y), end='-->')
optimizer.zero_grad()
inputs = tokenizer(x, padding=True, return_tensors='pt')
inputs.to(DEVICE)
cls, logits = model(
input_ids=inputs['input_ids'],
attention_mask=inputs['attention_mask']
)
# for training less than half the time, train on easy
labels = y
labels = [label2id[element] for element in labels]
labels = torch.tensor(labels).to(DEVICE)
y = torch.tensor(y).to(DEVICE)
class_loss = F.cross_entropy(logits, labels)
if epoch < epochs / 2:
triplet_loss, _ = batch_all_triplet_loss(y, cls, margin, squared=False)
# for training after half the time, train on hard
else:
triplet_loss = batch_hard_triplet_loss(y, cls, margin, squared=False)
loss = class_loss + triplet_loss
loss.backward()
optimizer.step()
total_loss += loss.detach().item()
batch_number += 1
del x, y, cls, logits, loss
torch.cuda.empty_cache()
# scheduler.step() # Update the learning rate
print(f'epoch loss: {total_loss/batch_number}')
# print(f"Epoch {epoch+1}: lr={scheduler.get_last_lr()[0]}")
if epoch % 5 == 0:
# torch.save(model.bert.state_dict(), './checkpoint/classification.pt')
torch.save(model.state_dict(), './checkpoint/classification.pt')
# torch.save(model.bert.state_dict(), './checkpoint/classification.pt')
torch.save(model.state_dict(), './checkpoint/classification.pt')
# %%