189 lines
5.5 KiB
Python
189 lines
5.5 KiB
Python
# why?
|
|
# the existing huggingface library does not allow for flexibility in changing
|
|
# the training data between epochs
|
|
|
|
# this code example illustrates the use of dataset regeneration to make changes
|
|
# to the training data between epochs
|
|
# %%
|
|
from torch.utils.data import Dataset, DataLoader
|
|
|
|
# from datasets import load_from_disk
|
|
import os
|
|
|
|
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
|
|
import re
|
|
import random
|
|
|
|
import torch
|
|
from transformers import (
|
|
AutoTokenizer,
|
|
AutoModelForSequenceClassification,
|
|
DataCollatorWithPadding,
|
|
Trainer,
|
|
EarlyStoppingCallback,
|
|
TrainingArguments
|
|
)
|
|
import evaluate
|
|
import numpy as np
|
|
import pandas as pd
|
|
from functools import partial
|
|
# import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
torch.set_float32_matmul_precision('high')
|
|
|
|
def set_seed(seed):
|
|
"""
|
|
Set the random seed for reproducibility.
|
|
"""
|
|
random.seed(seed) # Python random module
|
|
np.random.seed(seed) # NumPy random
|
|
torch.manual_seed(seed) # PyTorch CPU
|
|
torch.cuda.manual_seed(seed) # PyTorch GPU
|
|
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
|
|
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
|
|
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
|
|
|
|
set_seed(42)
|
|
|
|
# %%
|
|
# PARAMETERS
|
|
SAMPLES=5
|
|
|
|
# %%
|
|
# import training file
|
|
data_path = '../../esAppMod_data_import/train.csv'
|
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
|
# rather than use pattern, we use the real thing and property
|
|
entity_ids = df['entity_id'].to_list()
|
|
target_id_list = sorted(list(set(entity_ids)))
|
|
|
|
id2label = {}
|
|
label2id = {}
|
|
for idx, val in enumerate(target_id_list):
|
|
id2label[idx] = val
|
|
label2id[val] = idx
|
|
|
|
# %%
|
|
# we want to sample n samples from each class
|
|
# sample_size refers to the number of samples per class
|
|
def sample_from_df(df, sample_size_per_class=5):
|
|
sampled_df = (df.groupby( "entity_id")[['entity_id', 'mention']] # explicit give column names
|
|
.apply(lambda x: x.sample(n=min(sample_size_per_class, len(x))))
|
|
.reset_index(drop=True))
|
|
|
|
return sampled_df
|
|
|
|
|
|
# %%
|
|
# augment whole dataset
|
|
# for now, we just return the same df
|
|
def augment_data(df):
|
|
return df
|
|
|
|
# %%
|
|
class DynamicDataset(Dataset):
|
|
def __init__(self, df, sample_size_per_class, tokenizer):
|
|
"""
|
|
Args:
|
|
df (pd.DataFrame): Original DataFrame with class (id) and data columns.
|
|
sample_size_per_class (int): Number of samples to draw per class for each epoch.
|
|
"""
|
|
self.df = df
|
|
self.sample_size_per_class = sample_size_per_class
|
|
self.tokenizer = tokenizer
|
|
self.current_data = None
|
|
self.regenerate_data() # Generate the initial dataset
|
|
|
|
def regenerate_data(self):
|
|
"""
|
|
Generate a new sampled dataset for the current epoch.
|
|
|
|
dynamic callback function to regenerate data each time we call this
|
|
method, it updates the current_data we can:
|
|
|
|
- re-sample the dataframe for a new set of n_samples
|
|
- generate fresh augmentations this effectively
|
|
|
|
This allows us to re-sample and re-augment at the start of each epoch
|
|
"""
|
|
# Sample `sample_size_per_class` rows per class
|
|
sampled_df = sample_from_df(self.df, self.sample_size_per_class)
|
|
|
|
# perform future augmentations here
|
|
sampled_df = augment_data(sampled_df)
|
|
|
|
# perform tokenization here
|
|
# Batch tokenize the entire column of data
|
|
tokenized_batch = self.tokenizer(
|
|
sampled_df["mention"].to_list(), # Pass all text data at once
|
|
truncation=True,
|
|
# return_tensors="pt" # disabled because pt requires equal length tensors
|
|
)
|
|
|
|
# Store the tokenized data with labels
|
|
# we need to convert to torch tensors so that subsequent 'pad_sequence'
|
|
# and 'stack' operations can work
|
|
self.current_data = [
|
|
{
|
|
"input_ids": torch.tensor(tokenized_batch["input_ids"][i]),
|
|
"attention_mask": torch.tensor(tokenized_batch["attention_mask"][i]),
|
|
"labels": torch.tensor(sampled_df.iloc[i]["entity_id"]) # Include the label
|
|
}
|
|
for i in range(len(sampled_df))
|
|
]
|
|
|
|
|
|
def __len__(self):
|
|
return len(self.current_data)
|
|
|
|
def __getitem__(self, idx):
|
|
return self.current_data[idx]
|
|
|
|
|
|
# %%
|
|
# Dynamic dataset
|
|
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", clean_up_tokenization_spaces=False)
|
|
lean_df = df.drop(columns=['entity_name'])
|
|
dynamic_dataset = DynamicDataset(df = lean_df, sample_size_per_class=10, tokenizer=tokenizer)
|
|
|
|
# %%
|
|
# custom tokenization
|
|
|
|
# %%
|
|
# Example usage of dynamic dataset
|
|
sample = dynamic_dataset[0]
|
|
print(sample)
|
|
|
|
|
|
# %%
|
|
def custom_collate_fn(batch):
|
|
# Dynamically pad tensors to the longest sequence in the batch
|
|
input_ids = [item["input_ids"] for item in batch]
|
|
attention_masks = [item["attention_mask"] for item in batch]
|
|
labels = torch.stack([item["labels"] for item in batch])
|
|
|
|
# Pad inputs to the same length
|
|
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=True)
|
|
attention_masks = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True)
|
|
|
|
return {
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_masks,
|
|
"labels": labels
|
|
}
|
|
|
|
|
|
dataloader = DataLoader(
|
|
dynamic_dataset,
|
|
batch_size=32,
|
|
collate_fn=custom_collate_fn
|
|
)
|
|
|
|
# %%
|