domain_mapping/loss_comparisons_with_augme.../hybrid_train.py

434 lines
14 KiB
Python

# %%
import torch
import json
import random
import numpy as np
from transformers import AutoTokenizer
from transformers import AutoModel
from loss import (
batch_all_triplet_loss,
batch_hard_triplet_loss,
batch_all_soft_margin_triplet_loss,
batch_hard_soft_margin_triplet_loss)
from sklearn.neighbors import KNeighborsClassifier
from tqdm import tqdm
import pandas as pd
import re
from torch.utils.data import Dataset, DataLoader
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
torch.set_float32_matmul_precision('high')
def set_seed(seed):
"""
Set the random seed for reproducibility.
"""
random.seed(seed) # Python random module
np.random.seed(seed) # NumPy random
torch.manual_seed(seed) # PyTorch CPU
torch.cuda.manual_seed(seed) # PyTorch GPU
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
set_seed(42)
# %%
SHUFFLES=1
AMPLIFY_FACTOR=1
LEARNING_RATE=1e-4
DEVICE = torch.device('cuda:2') if torch.cuda.is_available() else torch.device('cpu')
# %%
EVAL_FILE="top1_curves/hybrid_output.txt"
with open(EVAL_FILE, "w") as f:
pass
# %%
def generate_train_entity_sets(entity_id_mentions, entity_id_name, group_size, anchor=True):
# split entity mentions into groups
# anchor = False, don't add entity name to each group, simply treat it as a normal mention
entity_sets = []
if anchor:
for id, mentions in entity_id_mentions.items():
random.shuffle(mentions)
positives = [mentions[i:i + group_size] for i in range(0, len(mentions), group_size)]
anchor_positive = [([entity_id_name[id]]+p, id) for p in positives]
entity_sets.extend(anchor_positive)
else:
for id, mentions in entity_id_mentions.items():
group = list(set([entity_id_name[id]] + mentions))
random.shuffle(group)
positives = [(mentions[i:i + group_size], id) for i in range(0, len(mentions), group_size)]
entity_sets.extend(positives)
return entity_sets
def batchGenerator(data, batch_size):
for i in range(0, len(data), batch_size):
batch = data[i:i+batch_size]
x, y = [], []
for t in batch:
x.extend(t[0])
y.extend([t[1]]*len(t[0]))
yield x, y
with open('../esAppMod/tca_entities.json', 'r') as file:
entities = json.load(file)
all_entity_id_name = {entity['entity_id']: entity['entity_name'] for _, entity in entities['data'].items()}
with open('../esAppMod/train.json', 'r') as file:
train = json.load(file)
train_entity_id_mentions = {data['entity_id']: data['mentions'] for _, data in train['data'].items()}
train_entity_id_name = {data['entity_id']: all_entity_id_name[data['entity_id']] for _, data in train['data'].items()}
# %%
###############
# alternate data import strategy
###################################################
# import code
# import training file
data_path = '../esAppMod_data_import/train.csv'
df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
df["training_id"] = df["entity_id"].map(label2id)
# %%
##############################################################
# augmentation code
# basic preprocessing
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# standardize spacing
text = re.sub(r'\s+', '_', text).strip()
return text
def generate_random_shuffles(text, n):
words = text.split() # Split the input into words
shuffled_variations = []
for _ in range(n):
shuffled = words[:] # Copy the word list to avoid in-place modification
random.shuffle(shuffled) # Randomly shuffle the words
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
return shuffled_variations
def shuffle_text(text, n_shuffles=SHUFFLES):
all_processed = []
# add the original text
all_processed.append(text)
# Generate random shuffles
shuffled_variations = generate_random_shuffles(text, n_shuffles)
all_processed.extend(shuffled_variations)
return all_processed
def corrupt_word(word):
"""Corrupt a single word using random corruption techniques."""
if len(word) <= 1: # Skip corruption for single-character words
return word
corruption_type = random.choice(["delete", "swap"])
if corruption_type == "delete":
# Randomly delete a character
idx = random.randint(0, len(word) - 1)
word = word[:idx] + word[idx + 1:]
elif corruption_type == "swap":
# Swap two adjacent characters
if len(word) > 1:
idx = random.randint(0, len(word) - 2)
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
return word
def corrupt_string(sentence, corruption_probability=0.01):
"""Corrupt each word in the string with a given probability."""
words = sentence.split()
corrupted_words = [
corrupt_word(word) if random.random() < corruption_probability else word
for word in words
]
return " ".join(corrupted_words)
def create_example(index, mention, entity_name):
return {'entity_id': index, 'mention': mention, 'entity_name': entity_name}
# augment whole dataset
def augment_data(df):
output_list = []
for idx,row in df.iterrows():
index = row['entity_id']
entity_name = row['entity_name']
parent_desc = row['mention']
parent_desc = preprocess_text(parent_desc)
# add basic example
output_list.append(create_example(index, parent_desc, entity_name))
# # add shuffled strings
# processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
# for desc in processed_descs:
# if (desc != parent_desc):
# output_list.append(create_example(index, desc, entity_name))
# add corrupted strings
desc = corrupt_string(parent_desc, corruption_probability=0.01)
if (desc != parent_desc):
output_list.append(create_example(index, desc, entity_name))
# add example with stripped non-alphanumerics
desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
if (desc != parent_desc):
output_list.append(create_example(index, desc, entity_name))
# short sequence amplifier
# short sequences are rare, and we must compensate by including more examples
# also, short sequence don't usually get affected by shuffle
words = parent_desc.split()
word_count = len(words)
if word_count <= 2:
for _ in range(AMPLIFY_FACTOR):
output_list.append(create_example(index, desc, entity_name))
new_df = pd.DataFrame(output_list)
return new_df
# %%
def make_entity_id_mentions(df):
entity_id_mentions = {}
entity_id_list = list(set(df['entity_id']))
for entity_id in entity_id_list:
entity_id_mentions[entity_id] = df[df['entity_id']==entity_id]['mention'].to_list()
return entity_id_mentions
def make_entity_id_name(df):
entity_id_name = {}
entity_id_list = list(set(df['entity_id']))
for entity_id in entity_id_list:
# entity_id always matches entity_name, so first value would work
entity_id_name[entity_id] = df[df['entity_id']==entity_id]['entity_name'].to_list()[0]
return entity_id_name
# evaluation
def run_evaluation(model, tokenizer):
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
with open('../esAppMod/tca_entities.json', 'r') as file:
entities = json.load(file)
all_entity_id_name = {entity['entity_id']: entity['entity_name'] for _, entity in entities['data'].items()}
with open('../esAppMod/train.json', 'r') as file:
train = json.load(file)
train_entity_id_mentions = {data['entity_id']: data['mentions'] for _, data in train['data'].items()}
train_entity_id_name = {data['entity_id']: all_entity_id_name[data['entity_id']] for _, data in train['data'].items()}
with open('../esAppMod/infer.json', 'r') as file:
test = json.load(file)
x_test = [preprocess_text(d['mention']) for _, d in test['data'].items()]
y_test = [d['entity_id'] for _, d in test['data'].items()]
train_entities, labels = list(train_entity_id_name.values()), list(train_entity_id_name.keys())
train_entities = [preprocess_text(element) for element in train_entities]
def batch_list(data, batch_size):
"""Yield successive n-sized chunks from data."""
for i in range(0, len(data), batch_size):
yield data[i:i + batch_size]
batches = batch_list(train_entities, 64)
embedding_list = []
for batch in batches:
inputs = tokenizer(batch, padding=True, return_tensors='pt')
outputs = model(
input_ids=inputs['input_ids'].to(DEVICE),
attention_mask=inputs['attention_mask'].to(DEVICE)
)
output = outputs.last_hidden_state[:,0,:]
output = output.detach().cpu().numpy()
embedding_list.append(output)
cls = np.concatenate(embedding_list)
batches = batch_list(x_test, 64)
embedding_list = []
for batch in batches:
inputs = tokenizer(batch, padding=True, return_tensors='pt')
outputs = model(
input_ids=inputs['input_ids'].to(DEVICE),
attention_mask=inputs['attention_mask'].to(DEVICE)
)
output = outputs.last_hidden_state[:,0,:]
output = output.detach().cpu().numpy()
embedding_list.append(output)
cls_test = np.concatenate(embedding_list)
knn = KNeighborsClassifier(n_neighbors=1, metric='euclidean').fit(cls, labels)
with open(EVAL_FILE, "a") as f:
# only compute top-1
distances, indices = knn.kneighbors(cls_test, n_neighbors=1)
num = 0
for a,b in zip(y_test, indices):
b = [labels[i] for i in b]
if a in b:
num += 1
print(f'{num / len(y_test)}', file=f)
# %%
num_sample_per_class = 10 # samples in each group
batch_size = 64 # number of groups, effective batch_size for computing triplet loss = batch_size * num_sample_per_class
margin = 2
epochs = 200
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
bert_model = AutoModel.from_pretrained(MODEL_NAME)
class BertForClassificationAndTriplet(nn.Module):
def __init__(self, bert_model, num_classes):
super().__init__()
self.bert = bert_model
self.classifier = nn.Linear(bert_model.config.hidden_size, num_classes)
def forward(self, input_ids, attention_mask=None):
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
cls_embeddings = outputs.last_hidden_state[:, 0, :] # CLS token
logits = self.classifier(cls_embeddings)
return cls_embeddings, logits
model = BertForClassificationAndTriplet(bert_model, num_classes=len(label2id))
optimizer = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE)
# scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
model.to(DEVICE)
model.train()
losses = []
def linear_decay(epoch, max_epochs, initial_lr, final_lr):
""" Calculate the linearly decayed learning rate. """
return initial_lr - (epoch / max_epochs) * (initial_lr - final_lr)
for epoch in tqdm(range(epochs)):
total_loss = 0.0
total_cross = 0.0
total_triplet = 0.0
batch_number = 0
# lr = linear_decay(epoch, epochs, initial_lr=1e-5, final_lr=5e-6)
# # Update optimizer's learning rate
# for param_group in optimizer.param_groups:
# param_group['lr'] = lr
if epoch % 10 == 0:
augmented_df = augment_data(df)
train_entity_id_mentions = make_entity_id_mentions(augmented_df)
train_entity_id_name = make_entity_id_name(augmented_df)
data = generate_train_entity_sets(train_entity_id_mentions, train_entity_id_name, num_sample_per_class-1, anchor=True)
random.shuffle(data)
for x,y in batchGenerator(data, batch_size):
# print(len(x), len(y), end='-->')
optimizer.zero_grad()
inputs = tokenizer(x, padding=True, return_tensors='pt')
inputs.to(DEVICE)
cls, logits = model(
input_ids=inputs['input_ids'],
attention_mask=inputs['attention_mask']
)
# for training less than half the time, train on easy
labels = y
labels = [label2id[element] for element in labels]
labels = torch.tensor(labels).to(DEVICE)
y = torch.tensor(y).to(DEVICE)
class_loss = F.cross_entropy(logits, labels)
if epoch < epochs / 2:
# triplet_loss, _ = batch_all_soft_margin_triplet_loss(y, cls, squared=False)
# loss = class_loss + triplet_loss
# loss,_ = batch_all_soft_margin_triplet_loss(y, cls, squared=False)
loss = class_loss
# for training after half the time, train on hard
# else:
# triplet_loss = batch_hard_soft_margin_triplet_loss(y, cls, squared=False)
# loss = triplet_loss
else:
loss = batch_hard_soft_margin_triplet_loss(y, cls, squared=False)
loss.backward()
optimizer.step()
total_loss += loss.detach().item()
# total_cross += class_loss.detach().item()
# total_triplet += triplet_loss.detach().item()
batch_number += 1
# run evaluation on test data
model.eval()
with torch.no_grad():
run_evaluation(model=model.bert, tokenizer=tokenizer)
model.train()
# scheduler.step() # Update the learning rate
# print(f'epoch loss: {total_loss/batch_number}, cross loss: {total_cross/batch_number}, triplet loss: {total_triplet/batch_number}')
print(f'epoch loss: {total_loss/batch_number}')
# print(f"Epoch {epoch+1}: lr={lr}")
# if epoch % 5 == 0:
# # torch.save(model.bert.state_dict(), './checkpoint/classification.pt')
# torch.save(model.state_dict(), './checkpoint/hybrid.pt')
# torch.save(model.bert.state_dict(), './checkpoint/classification.pt')
# torch.save(model.state_dict(), './checkpoint/hybrid.pt')
# %%