# %% import pandas as pd import matplotlib.pyplot as plt import numpy as np # %% data_path = '../loss_comparisons_without_augmentation/top1_curves/baseline_output.txt' df = pd.read_csv(data_path, header=None) y = df[0] plt.plot(y) # Find the max value max_y = np.max(y) # Max value max_x = np.argmax(y) # x value corresponding to the max y # Annotate the max value on the plot # plt.annotate(f'Max: {max_y:.5f}', # Text to display # xy=(max_x, max_y), # Point to annotate # xytext=(max_x+0.7, max_y-0.3), # Location of text # arrowprops=dict(facecolor='black',arrowstyle='->'), # bbox=dict(boxstyle="round,pad=0.3", edgecolor='black', facecolor='yellow')) # data_path = '../experimental/top1_curves/character_output.txt' # df = pd.read_csv(data_path, header=None) # y = df[0] # plt.plot(y) # max_y = np.max(y) # Max value # max_x = np.argmax(y) # x value corresponding to the max y # # Annotate the max value on the plot # plt.annotate(f'Max: {max_y:.5f}', # Text to display # xy=(max_x, max_y), # Point to annotate # xytext=(max_x+0.7, max_y-0.2), # Location of text # arrowprops=dict(facecolor='black',arrowstyle='->'), # bbox=dict(boxstyle="round,pad=0.3", edgecolor='black', facecolor='yellow')) data_path = '../experimental/top1_curves/character_knn.txt' df = pd.read_csv(data_path, header=None) y = df[0] plt.plot(y) max_y = np.max(y) # Max value max_x = np.argmax(y) # x value corresponding to the max y # Annotate the max value on the plot plt.annotate(f'Max: {max_y:.5f}', # Text to display xy=(max_x, max_y), # Point to annotate xytext=(max_x+0.7, max_y-0.4), # Location of text arrowprops=dict(facecolor='black',arrowstyle='->'), bbox=dict(boxstyle="round,pad=0.3", edgecolor='black', facecolor='yellow')) plt.ylim(0.4,1) # data_path = '../loss_comparisons_with_augmentations/top1_curves/smooth_output.txt' # df = pd.read_csv(data_path, header=None) # plt.plot(df[0]) # %%