# %% from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # %% # Load model and tokenizer # model_name = "bigscience/bloom-7b1" # Replace with your model model_name = "google/flan-t5-large" tokenizer = AutoTokenizer.from_pretrained(model_name) # Automatically map model layers to available GPUs model = AutoModelForSeq2SeqLM.from_pretrained( model_name, device_map="auto", # Automatically split across multiple GPUs torch_dtype="auto" # Use FP16 if available ) # %% # Prepare input text = "The quick brown fox jumps over the lazy dog." inputs = tokenizer(text, return_tensors="pt") inputs = inputs.to("cuda") # Generate output outputs = model.generate(inputs["input_ids"], max_length=50) # Decode and print result print(tokenizer.decode(outputs[0], skip_special_tokens=True)) # %% # %% # Prepare input def generate_acronym(text): # Define prompt # prompt = f"Imagine you are a diverse database. Given the following: '{text}', please suggest to me 5 possible variations. Give 5." prompt = f"Give me a list of 10 historical product names related to: '{text}'. Format the output in a list, like this 1. Item, 2. Item, 3. ..." # Generate acronym inputs = tokenizer(prompt, return_tensors="pt") inputs = inputs.to("cuda") outputs = model.generate( inputs["input_ids"], max_length=200, do_sample=True, top_k=50, temperature=0.8) # no_repeat_ngram_size=3) return tokenizer.decode(outputs[0], skip_special_tokens=True) # %% # Example usage # text = "Advanced Data Analytics Platform" text = "windows desktop" acronym = generate_acronym(text) print(f"Generation: {acronym}") # %%