# %% # from datasets import load_from_disk import os os.environ['NCCL_P2P_DISABLE'] = '1' os.environ['NCCL_IB_DISABLE'] = '1' os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3" import torch from transformers import ( AutoTokenizer, AutoModelForSequenceClassification, DataCollatorWithPadding, Trainer, EarlyStoppingCallback, TrainingArguments ) import evaluate import numpy as np import pandas as pd # import matplotlib.pyplot as plt from datasets import Dataset, DatasetDict torch.set_float32_matmul_precision('high') # %% # import training file data_path = '../../data_import/train.csv' train_df = pd.read_csv(data_path, skipinitialspace=True) # rather than use pattern, we use the real thing and property entity_ids = train_df['entity_id'].to_list() target_id_list = sorted(list(set(entity_ids))) # %% id2label = {} label2id = {} for idx, val in enumerate(target_id_list): id2label[idx] = val label2id[val] = idx # %% # outputs a list of dictionaries # processes dataframe into lists of dictionaries # each element maps input to output # input: tag_description # output: class label def process_df_to_dict(df): output_list = [] for _, row in df.iterrows(): desc = row['mention'] index = row['entity_id'] element = { 'text' : f"{desc}", 'label': label2id[index], # ensure labels starts from 0 } output_list.append(element) return output_list def create_dataset(): # train data_path = '../../data_import/train.csv' train_df = pd.read_csv(data_path, skipinitialspace=True) combined_data = DatasetDict({ 'train': Dataset.from_list(process_df_to_dict(train_df)), }) return combined_data # %% def train(): save_path = f'checkpoint' split_datasets = create_dataset() # prepare tokenizer # model_checkpoint = "distilbert/distilbert-base-uncased" model_checkpoint = 'google-bert/bert-base-cased' tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True) # Define additional special tokens # additional_special_tokens = [""] # Add the additional special tokens to the tokenizer # tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens}) max_length = 120 # given a dataset entry, run it through the tokenizer def preprocess_function(example): input = example['text'] # text_target sets the corresponding label to inputs # there is no need to create a separate 'labels' model_inputs = tokenizer( input, max_length=max_length, truncation=True, padding=True ) return model_inputs # map maps function to each "row" in the dataset # aka the data in the immediate nesting tokenized_datasets = split_datasets.map( preprocess_function, batched=True, num_proc=8, remove_columns="text", ) # %% temp # tokenized_datasets['train'].rename_columns() # %% # create data collator data_collator = DataCollatorWithPadding(tokenizer=tokenizer) # %% # compute metrics metric = evaluate.load("accuracy") def compute_metrics(eval_preds): preds, labels = eval_preds preds = np.argmax(preds, axis=1) return metric.compute(predictions=preds, references=labels) # %% # create id2label and label2id # %% model = AutoModelForSequenceClassification.from_pretrained( model_checkpoint, num_labels=len(target_id_list), id2label=id2label, label2id=label2id) # important! after extending tokens vocab model.resize_token_embeddings(len(tokenizer)) # model = torch.compile(model, backend="inductor", dynamic=True) # %% # Trainer training_args = TrainingArguments( output_dir=f"{save_path}", # eval_strategy="epoch", eval_strategy="no", logging_dir="tensorboard-log", logging_strategy="epoch", # save_strategy="epoch", load_best_model_at_end=False, learning_rate=1e-4, per_device_train_batch_size=64, per_device_eval_batch_size=64, auto_find_batch_size=False, ddp_find_unused_parameters=False, weight_decay=0.01, save_total_limit=1, num_train_epochs=250, bf16=True, push_to_hub=False, remove_unused_columns=False, ) trainer = Trainer( model, training_args, train_dataset=tokenized_datasets["train"], tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, # callbacks=[EarlyStoppingCallback(early_stopping_patience=3)], ) # uncomment to load training from checkpoint # checkpoint_path = 'default_40_1/checkpoint-5600' # trainer.train(resume_from_checkpoint=checkpoint_path) trainer.train() # execute training train() # %%