Implemented dynamic data re-sampling at each epoch
This commit is contained in:
parent
5312cfa06f
commit
b6cf2d4416
|
@ -0,0 +1,58 @@
|
|||
# %%
|
||||
import pandas as pd
|
||||
|
||||
# %%
|
||||
#############################
|
||||
# How much data
|
||||
# data_path = '../biomedical_data_import/bc2gm_test.csv'
|
||||
# data_path = '../biomedical_data_import/bc2gm_test.csv'
|
||||
data_path = '../biomedical_data_import/bc5cdr-chemical_train.csv'
|
||||
df = pd.read_csv(data_path)
|
||||
len(df)
|
||||
|
||||
# %%
|
||||
|
||||
# %%
|
||||
# bc2gm:
|
||||
# train: 288939
|
||||
# test: 1034
|
||||
|
||||
# %%
|
||||
################################
|
||||
# check for NA values
|
||||
df[df['mention'].isna()]
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
##############################
|
||||
# how many labels?
|
||||
data_path = '../biomedical_data_import/bc2gm_test.csv'
|
||||
df = pd.read_csv(data_path)
|
||||
|
||||
id_list = sorted(list(set(df['entity_id'].to_list())))
|
||||
|
||||
# %%
|
||||
len(id_list)
|
||||
|
||||
# %%
|
||||
for id in id_list:
|
||||
if isinstance(id,int):
|
||||
continue
|
||||
else:
|
||||
print(id)
|
||||
# %%
|
||||
# bc2gm:
|
||||
# 61641 - holy shit
|
||||
|
||||
# %%
|
||||
###############################
|
||||
# max length
|
||||
max_length = 0
|
||||
for mention in df['mention']:
|
||||
current_length = len(mention)
|
||||
if current_length > max_length:
|
||||
max_length = current_length
|
||||
print(max_length)
|
||||
|
||||
# %%
|
|
@ -0,0 +1,17 @@
|
|||
# %%
|
||||
from transformers import AutoTokenizer
|
||||
import pandas as pd
|
||||
|
||||
|
||||
data_path = '../biomedical_data_import/bc2gm_train.csv'
|
||||
df = pd.DataFrame(data_path)
|
||||
|
||||
# Load the tokenizer (e.g., BERT tokenizer)
|
||||
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
||||
|
||||
# %%
|
||||
# Calculate token lengths
|
||||
df['token_length'] = df['mention'].apply(lambda x: len(tokenizer.tokenize(x)))
|
||||
|
||||
# Display the dataset with token lengths
|
||||
print(df)
|
|
@ -0,0 +1 @@
|
|||
*.csv
|
|
@ -0,0 +1,36 @@
|
|||
# %%
|
||||
from collections import defaultdict
|
||||
|
||||
# %%
|
||||
data_name = 'bc2gm' # and the other 3 names
|
||||
train_path = 'test_dictionary.txt'
|
||||
test_path = 'processed_test_refined'
|
||||
|
||||
# %%
|
||||
vocab = defaultdict(set)
|
||||
with open(f'../biomedical/{data_name}/{train_path}') as f:
|
||||
for line in f:
|
||||
term_list = line.strip().split('||')
|
||||
vocab[term_list[0]].add(term_list[1].lower())
|
||||
|
||||
cui_to_id, id_to_cui = {}, {}
|
||||
vocab_entity_id_mentions = {}
|
||||
for id, cui in enumerate(vocab):
|
||||
cui_to_id[cui] = id
|
||||
id_to_cui[id] = cui
|
||||
for cui, mention in vocab.items():
|
||||
vocab_entity_id_mentions[cui_to_id[cui]] = mention
|
||||
|
||||
vocab_mentions, vocab_ids = [], []
|
||||
for id, mentions in vocab_entity_id_mentions.items():
|
||||
vocab_mentions.extend(mentions)
|
||||
vocab_ids.extend([id]*len(mentions))
|
||||
|
||||
# %%
|
||||
test_mentions, test_cuis = [], []
|
||||
with open(f'../biomedical/{data_name}/{test_path}/0.concept') as f:
|
||||
for line in f:
|
||||
term_list = line.strip().split('||')
|
||||
test_cuis.append(term_list[-1])
|
||||
test_mentions.append(term_list[-2].lower())
|
||||
|
|
@ -0,0 +1,134 @@
|
|||
# %%
|
||||
import pandas as pd
|
||||
from tqdm import tqdm
|
||||
import multiprocessing
|
||||
|
||||
# %%
|
||||
#########################
|
||||
# we first process training data
|
||||
def process_train_to_csv(data_path, output):
|
||||
# data_path = '../esAppMod_data_import/parent_train.csv'
|
||||
input_df = pd.read_csv(data_path, sep=f'\|\|', engine='python', skipinitialspace=True, header=None)
|
||||
input_df = input_df.rename(columns={0: 'entity_id', 1: 'mention',})
|
||||
|
||||
# handle 'or' values in the number column
|
||||
df = input_df.copy()
|
||||
new_rows = []
|
||||
for idx,row in df.iterrows():
|
||||
index = row['entity_id']
|
||||
mention = row['mention']
|
||||
|
||||
# omit nan values
|
||||
if row['mention'] == 'NaN' or pd.isna(row['mention']):
|
||||
df = df.drop(index=[idx])
|
||||
continue
|
||||
|
||||
# handle possible multiple indices in index field
|
||||
if '|' in row['entity_id']:
|
||||
# print(row[0])
|
||||
df = df.drop(index=[idx])
|
||||
index_list = index.split('|')
|
||||
|
||||
for new_index in index_list:
|
||||
element = {
|
||||
'entity_id': new_index,
|
||||
'mention': mention,
|
||||
}
|
||||
new_rows.append(element)
|
||||
|
||||
df_new = pd.DataFrame(new_rows, columns=df.columns)
|
||||
df = pd.concat([df, df_new], ignore_index=True)
|
||||
df = df.reset_index(drop=True)
|
||||
|
||||
df.to_csv(output, index=False)
|
||||
|
||||
|
||||
# %%
|
||||
name_list =[
|
||||
('../biomedical/bc2gm/test_dictionary.txt', 'bc2gm_train.csv'),
|
||||
('../biomedical/bc5cdr-chemical/test_dictionary.txt', 'bc5cdr-chemical_train.csv'),
|
||||
('../biomedical/bc5cdr-disease/test_dictionary.txt', 'bc5cdr-disease_train.csv'),
|
||||
('../biomedical/ncbi/test_dictionary.txt', 'ncbi_train.csv'),
|
||||
]
|
||||
|
||||
# for data_path, output in name_list:
|
||||
# process_train_to_csv(data_path, output)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Create a pool of workers
|
||||
num_workers = 4 # set number of cpus to use
|
||||
with multiprocessing.Pool(num_workers) as pool:
|
||||
# starmap
|
||||
# an iterable of [(1,2), (3, 4)] results in [func(1,2), func(3,4)].
|
||||
pool.starmap(process_train_to_csv, name_list)
|
||||
|
||||
|
||||
# %%
|
||||
#################################################
|
||||
# process test data
|
||||
|
||||
def is_int_string(s):
|
||||
try:
|
||||
int(s)
|
||||
return True
|
||||
except ValueError:
|
||||
return False
|
||||
|
||||
def process_test_to_csv(data_path, output):
|
||||
# data_path = '../esAppMod_data_import/parent_train.csv'
|
||||
input_df = pd.read_csv(data_path, sep=f'\|\|', engine='python', skipinitialspace=True, header=None)
|
||||
input_df = input_df.drop(columns=[0, 1, 2])
|
||||
input_df = input_df.rename(columns={3: 'mention', 4: 'entity_id'})
|
||||
|
||||
# handle 'or' values in the number column
|
||||
df = input_df.copy()
|
||||
new_rows = []
|
||||
for idx,row in df.iterrows():
|
||||
|
||||
# handle possible multiple indices
|
||||
if '|' in row['entity_id']:
|
||||
index = row['entity_id']
|
||||
mention = row['mention']
|
||||
df = df.drop(index=[idx])
|
||||
index_list = index.split('|')
|
||||
|
||||
for new_index in index_list:
|
||||
element = {
|
||||
'entity_id': new_index,
|
||||
'mention': mention,
|
||||
}
|
||||
new_rows.append(element)
|
||||
|
||||
df_new = pd.DataFrame(new_rows, columns=df.columns)
|
||||
df = pd.concat([df, df_new], ignore_index=True)
|
||||
df = df.reset_index(drop=True)
|
||||
|
||||
# do some cleanup
|
||||
df['entity_id'].isna()
|
||||
|
||||
df.to_csv(output, index=False)
|
||||
|
||||
|
||||
# %%
|
||||
name_list =[
|
||||
('../biomedical/bc2gm/processed_test_refined/0.concept', 'bc2gm_test.csv'),
|
||||
('../biomedical/bc5cdr-chemical/processed_test_refined/0.concept', 'bc5cdr-chemical_test.csv'),
|
||||
('../biomedical/bc5cdr-disease/processed_test_refined/0.concept', 'bc5cdr-disease_test.csv'),
|
||||
('../biomedical/ncbi/processed_test_refined/0.concept', 'ncbi_test.csv'),
|
||||
]
|
||||
|
||||
# for data_path, output in name_list:
|
||||
# process_test_to_csv(data_path, output)
|
||||
if __name__ == "__main__":
|
||||
# Create a pool of workers
|
||||
num_workers = 4 # set number of cpus to use
|
||||
with multiprocessing.Pool(num_workers) as pool:
|
||||
# starmap
|
||||
# an iterable of [(1,2), (3, 4)] results in [func(1,2), func(3,4)].
|
||||
pool.starmap(process_test_to_csv, name_list)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# %%
|
|
@ -0,0 +1,388 @@
|
|||
# %%
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import random
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments,
|
||||
TrainerCallback
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import math
|
||||
from functools import partial
|
||||
import warnings
|
||||
|
||||
warnings.filterwarnings("ignore", message='Was asked to gather along dimension 0')
|
||||
warnings.filterwarnings("ignore", message='FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated.')
|
||||
|
||||
# import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
def set_seed(seed):
|
||||
"""
|
||||
Set the random seed for reproducibility.
|
||||
"""
|
||||
random.seed(seed) # Python random module
|
||||
np.random.seed(seed) # NumPy random
|
||||
torch.manual_seed(seed) # PyTorch CPU
|
||||
torch.cuda.manual_seed(seed) # PyTorch GPU
|
||||
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
|
||||
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
|
||||
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
|
||||
|
||||
set_seed(42)
|
||||
|
||||
# %%
|
||||
# PARAMETERS
|
||||
SAMPLES=20
|
||||
SHUFFLES=5
|
||||
AMPLIFY_FACTOR=5
|
||||
|
||||
# %%
|
||||
###################################################
|
||||
# import code
|
||||
# import training file
|
||||
data_path = '../../esAppMod_data_import/train.csv'
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
entity_ids = df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
df["training_id"] = df["entity_id"].map(label2id)
|
||||
|
||||
# %%
|
||||
##############################################################
|
||||
# augmentation code
|
||||
|
||||
# basic preprocessing
|
||||
def preprocess_text(text):
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def generate_random_shuffles(text, n):
|
||||
words = text.split() # Split the input into words
|
||||
shuffled_variations = []
|
||||
|
||||
for _ in range(n):
|
||||
shuffled = words[:] # Copy the word list to avoid in-place modification
|
||||
random.shuffle(shuffled) # Randomly shuffle the words
|
||||
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
|
||||
|
||||
return shuffled_variations
|
||||
|
||||
|
||||
def shuffle_text(text, n_shuffles=SHUFFLES):
|
||||
all_processed = []
|
||||
# add the original text
|
||||
all_processed.append(text)
|
||||
|
||||
# Generate random shuffles
|
||||
shuffled_variations = generate_random_shuffles(text, n_shuffles)
|
||||
all_processed.extend(shuffled_variations)
|
||||
|
||||
return all_processed
|
||||
|
||||
def corrupt_word(word):
|
||||
"""Corrupt a single word using random corruption techniques."""
|
||||
if len(word) <= 1: # Skip corruption for single-character words
|
||||
return word
|
||||
|
||||
corruption_type = random.choice(["delete", "swap"])
|
||||
|
||||
if corruption_type == "delete":
|
||||
# Randomly delete a character
|
||||
idx = random.randint(0, len(word) - 1)
|
||||
word = word[:idx] + word[idx + 1:]
|
||||
|
||||
elif corruption_type == "swap":
|
||||
# Swap two adjacent characters
|
||||
if len(word) > 1:
|
||||
idx = random.randint(0, len(word) - 2)
|
||||
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
|
||||
|
||||
|
||||
return word
|
||||
|
||||
def corrupt_string(sentence, corruption_probability=0.01):
|
||||
"""Corrupt each word in the string with a given probability."""
|
||||
words = sentence.split()
|
||||
corrupted_words = [
|
||||
corrupt_word(word) if random.random() < corruption_probability else word
|
||||
for word in words
|
||||
]
|
||||
return " ".join(corrupted_words)
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
def create_example(index, mention):
|
||||
return {'training_id': index, 'mention': mention}
|
||||
|
||||
# augment whole dataset
|
||||
def augment_data(df):
|
||||
output_list = []
|
||||
|
||||
for idx,row in df.iterrows():
|
||||
index = row['training_id']
|
||||
parent_desc = row['mention']
|
||||
parent_desc = preprocess_text(parent_desc)
|
||||
|
||||
# add basic example
|
||||
output_list.append(create_example(index, parent_desc))
|
||||
|
||||
# add shuffled strings
|
||||
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
|
||||
for desc in processed_descs:
|
||||
if (desc != parent_desc):
|
||||
output_list.append(create_example(index, desc))
|
||||
|
||||
# add corrupted strings
|
||||
desc = corrupt_string(parent_desc, corruption_probability=0.1)
|
||||
if (desc != parent_desc):
|
||||
output_list.append(create_example(index, desc))
|
||||
|
||||
# add example with stripped non-alphanumerics
|
||||
desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
|
||||
if (desc != parent_desc):
|
||||
output_list.append(create_example(index, desc))
|
||||
|
||||
# short sequence amplifier
|
||||
# short sequences are rare, and we must compensate by including more examples
|
||||
# also, short sequence don't usually get affected by shuffle
|
||||
words = parent_desc.split()
|
||||
word_count = len(words)
|
||||
if word_count <= 2:
|
||||
for _ in range(AMPLIFY_FACTOR):
|
||||
output_list.append(create_example(index, desc))
|
||||
|
||||
new_df = pd.DataFrame(output_list)
|
||||
return new_df
|
||||
|
||||
|
||||
###############################################################
|
||||
# regeneration code
|
||||
# %%
|
||||
# we want to sample n samples from each class
|
||||
# sample_size refers to the number of samples per class
|
||||
def sample_from_df(df, sample_size_per_class=5):
|
||||
sampled_df = (df.groupby( "training_id")[['training_id', 'mention']] # explicit give column names
|
||||
.apply(lambda x: x.sample(n=min(sample_size_per_class, len(x))))
|
||||
.reset_index(drop=True))
|
||||
|
||||
return sampled_df
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
class DynamicDataset(Dataset):
|
||||
def __init__(self, df, sample_size_per_class, tokenizer):
|
||||
"""
|
||||
Args:
|
||||
df (pd.DataFrame): Original DataFrame with class (id) and data columns.
|
||||
sample_size_per_class (int): Number of samples to draw per class for each epoch.
|
||||
"""
|
||||
self.df = df
|
||||
self.sample_size_per_class = sample_size_per_class
|
||||
self.tokenizer = tokenizer
|
||||
self.current_data = None
|
||||
self.regenerate_data() # Generate the initial dataset
|
||||
|
||||
def regenerate_data(self):
|
||||
"""
|
||||
Generate a new sampled dataset for the current epoch.
|
||||
|
||||
dynamic callback function to regenerate data each time we call this
|
||||
method, it updates the current_data we can:
|
||||
|
||||
- re-sample the dataframe for a new set of n_samples
|
||||
- generate fresh augmentations this effectively
|
||||
|
||||
This allows us to re-sample and re-augment at the start of each epoch
|
||||
"""
|
||||
# Sample `sample_size_per_class` rows per class
|
||||
sampled_df = sample_from_df(self.df, self.sample_size_per_class)
|
||||
|
||||
# perform future edits here
|
||||
sampled_df = augment_data(sampled_df)
|
||||
|
||||
# perform tokenization here
|
||||
# Batch tokenize the entire column of data
|
||||
tokenized_batch = self.tokenizer(
|
||||
sampled_df["mention"].to_list(), # Pass all text data at once
|
||||
truncation=True,
|
||||
# return_tensors="pt" # disabled because pt requires equal length tensors
|
||||
)
|
||||
|
||||
# Store the tokenized data with labels
|
||||
self.current_data = [
|
||||
{
|
||||
"input_ids": torch.tensor(tokenized_batch["input_ids"][i]),
|
||||
"attention_mask": torch.tensor(tokenized_batch["attention_mask"][i]),
|
||||
"labels": torch.tensor(sampled_df.iloc[i]["training_id"]) # Include the label
|
||||
}
|
||||
for i in range(len(sampled_df))
|
||||
]
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.current_data)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.current_data[idx]
|
||||
|
||||
# %%
|
||||
class RegenerateDatasetCallback(TrainerCallback):
|
||||
def __init__(self, dataset):
|
||||
self.dataset = dataset
|
||||
|
||||
def on_epoch_begin(self, args, state, control, **kwargs):
|
||||
print(f"Epoch {int(math.ceil(state.epoch + 1))}: Regenerating dataset")
|
||||
self.dataset.regenerate_data()
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
def custom_collate_fn(batch):
|
||||
# Dynamically pad tensors to the longest sequence in the batch
|
||||
input_ids = [item["input_ids"] for item in batch]
|
||||
attention_masks = [item["attention_mask"] for item in batch]
|
||||
labels = torch.stack([item["labels"] for item in batch])
|
||||
|
||||
# Pad inputs to the same length
|
||||
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=True)
|
||||
attention_masks = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True)
|
||||
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_masks,
|
||||
"labels": labels
|
||||
}
|
||||
|
||||
|
||||
##########################################################################
|
||||
# training code
|
||||
# %%
|
||||
def train():
|
||||
|
||||
save_path = f'checkpoint'
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
||||
# model_checkpoint = 'prajjwal1/bert-small'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, clean_up_tokenization_spaces=True)
|
||||
|
||||
# make the dataset
|
||||
|
||||
|
||||
# Define the callback
|
||||
lean_df = df.drop(columns=['entity_name'])
|
||||
dynamic_dataset = DynamicDataset(df = lean_df, sample_size_per_class=10, tokenizer=tokenizer)
|
||||
|
||||
# create the regeneration callback
|
||||
regeneration_callback = RegenerateDatasetCallback(dynamic_dataset)
|
||||
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
save_strategy="steps",
|
||||
save_steps=500,
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=5e-5,
|
||||
per_device_train_batch_size=64,
|
||||
# per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=120,
|
||||
warmup_steps=400,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=dynamic_dataset,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=custom_collate_fn,
|
||||
compute_metrics=compute_metrics,
|
||||
callbacks=[regeneration_callback]
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
train()
|
||||
|
||||
|
||||
# %%
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
*******************************************************************************
|
||||
Accuracy: 0.80197
|
||||
F1 Score: 0.81948
|
||||
Precision: 0.88067
|
||||
Recall: 0.80197
|
||||
Accuracy: 0.80655
|
||||
F1 Score: 0.82821
|
||||
Precision: 0.87847
|
||||
Recall: 0.80655
|
|
@ -0,0 +1,236 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
BATCH_SIZE = 32
|
||||
|
||||
# %%
|
||||
# construct the target id list
|
||||
data_path = '../../../biomedical_data_import/bc2gm_train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
entity_ids = train_df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
# target_id_list = [id for id in target_id_list]
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
|
||||
# introduce pre-processing functions
|
||||
def preprocess_text(text):
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# Substitute digits with '#'
|
||||
# text = re.sub(r'\d+', '#', text)
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = row['mention']
|
||||
desc = preprocess_text(desc)
|
||||
row_id = row['entity_id']
|
||||
element = {
|
||||
'text' : desc,
|
||||
'labels': label2id[row_id], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset():
|
||||
# train
|
||||
data_path = '../../../biomedical_data_import/bc2gm_test.csv'
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'test': Dataset.from_list(process_df_to_dict(test_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
def test():
|
||||
|
||||
test_dataset = create_dataset()
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
checkpoint_directory = f'../checkpoint'
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# print datasets['test'] columns
|
||||
column_info = datasets['test'].features
|
||||
for column, dtype in column_info.items():
|
||||
print(f"Column: {column}, Type: {dtype}")
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model = model.eval()
|
||||
|
||||
device = torch.device('cuda:3' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
|
||||
pred_labels = []
|
||||
actual_labels = []
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
dataloader = DataLoader(
|
||||
datasets['test'],
|
||||
batch_size=BATCH_SIZE,
|
||||
shuffle=False,
|
||||
collate_fn=data_collator)
|
||||
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
actual_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
logits = model(
|
||||
input_ids,
|
||||
attention_mask).logits
|
||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||||
pred_labels.extend(predicted_class_ids)
|
||||
|
||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||
|
||||
|
||||
# %%
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
y_true = actual_labels
|
||||
y_pred = pred_labels
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
average_parameter = 'weighted'
|
||||
zero_division_parameter = 0
|
||||
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
print('*' * 80, file=f)
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
# export result
|
||||
label_list = [id2label[id] for id in pred_labels]
|
||||
df = pd.DataFrame({
|
||||
'class_prediction': pd.Series(label_list)
|
||||
})
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result.csv", index=False)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
test()
|
|
@ -0,0 +1,367 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import random
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
def set_seed(seed):
|
||||
"""
|
||||
Set the random seed for reproducibility.
|
||||
"""
|
||||
random.seed(seed) # Python random module
|
||||
np.random.seed(seed) # NumPy random
|
||||
torch.manual_seed(seed) # PyTorch CPU
|
||||
torch.cuda.manual_seed(seed) # PyTorch GPU
|
||||
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
|
||||
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
|
||||
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
|
||||
|
||||
set_seed(42)
|
||||
|
||||
SHUFFLES=0 # 0 shuffles means it does not re-sample
|
||||
|
||||
# %%
|
||||
|
||||
# We want to map the entity_id to a consecutive set of id's
|
||||
# import training file
|
||||
data_path = '../../../biomedical_data_import/bc2gm_train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
entity_ids = train_df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
# %%
|
||||
# introduce pre-processing functions
|
||||
def preprocess_text(text):
|
||||
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# Substitute digits with 'x'
|
||||
# text = re.sub(r'\d+', '#', text)
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def generate_random_shuffles(text, n):
|
||||
"""
|
||||
Generate n strings with randomly shuffled words from the input text.
|
||||
|
||||
Args:
|
||||
text (str): The input text.
|
||||
n (int): The number of random variations to generate.
|
||||
|
||||
Returns:
|
||||
list: A list of strings with shuffled words.
|
||||
"""
|
||||
words = text.split() # Split the input into words
|
||||
shuffled_variations = []
|
||||
|
||||
for _ in range(n):
|
||||
shuffled = words[:] # Copy the word list to avoid in-place modification
|
||||
random.shuffle(shuffled) # Randomly shuffle the words
|
||||
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
|
||||
|
||||
return shuffled_variations
|
||||
|
||||
|
||||
# generate n more shuffled examples
|
||||
def shuffle_text(text, n_shuffles=SHUFFLES):
|
||||
"""
|
||||
Preprocess a list of texts and add n random shuffles for each string.
|
||||
|
||||
Args:
|
||||
texts (list): An input strings.
|
||||
n_shuffles (int): Number of random shuffles to generate for each string.
|
||||
|
||||
Returns:
|
||||
list: A list of preprocessed and shuffled strings.
|
||||
"""
|
||||
all_processed = []
|
||||
# add the original text
|
||||
all_processed.append(text)
|
||||
|
||||
# Generate random shuffles
|
||||
shuffled_variations = generate_random_shuffles(text, n_shuffles)
|
||||
all_processed.extend(shuffled_variations)
|
||||
|
||||
return all_processed
|
||||
|
||||
|
||||
######################################
|
||||
|
||||
# augmentation by text corruption
|
||||
|
||||
def corrupt_word(word):
|
||||
"""Corrupt a single word using random corruption techniques."""
|
||||
if len(word) <= 1: # Skip corruption for single-character words
|
||||
return word
|
||||
|
||||
corruption_type = random.choice(["delete", "swap"])
|
||||
|
||||
if corruption_type == "delete":
|
||||
# Randomly delete a character
|
||||
idx = random.randint(0, len(word) - 1)
|
||||
word = word[:idx] + word[idx + 1:]
|
||||
|
||||
elif corruption_type == "swap":
|
||||
# Swap two adjacent characters
|
||||
if len(word) > 1:
|
||||
idx = random.randint(0, len(word) - 2)
|
||||
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
|
||||
|
||||
|
||||
return word
|
||||
|
||||
def corrupt_string(sentence, corruption_probability=0.01):
|
||||
"""Corrupt each word in the string with a given probability."""
|
||||
words = sentence.split()
|
||||
corrupted_words = [
|
||||
corrupt_word(word) if random.random() < corruption_probability else word
|
||||
for word in words
|
||||
]
|
||||
return " ".join(corrupted_words)
|
||||
|
||||
|
||||
#############################################################
|
||||
# Data Run code here
|
||||
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
# produce shuffling
|
||||
index = row['entity_id']
|
||||
parent_desc = row['mention']
|
||||
if isinstance(parent_desc, float):
|
||||
print(parent_desc)
|
||||
parent_desc = f'{parent_desc}'
|
||||
parent_desc = preprocess_text(parent_desc)
|
||||
|
||||
# unaugmented data
|
||||
element = {
|
||||
'text' : parent_desc,
|
||||
'label': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
|
||||
# # short sequences are rare, and we must compensate by including more examples
|
||||
# # mutation of other longer sequences might drown out rare short sequences
|
||||
# words = parent_desc.split()
|
||||
# word_count = len(words)
|
||||
# if word_count < 3:
|
||||
# for _ in range(10):
|
||||
# element = {
|
||||
# 'text': parent_desc,
|
||||
# 'label': label2id[index],
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
# add shuffled strings
|
||||
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
|
||||
for desc in processed_descs:
|
||||
if (desc != parent_desc):
|
||||
element = {
|
||||
'text' : desc,
|
||||
'label': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
# # corrupt string
|
||||
# desc = corrupt_string(parent_desc, corruption_probability=0.1)
|
||||
# if (desc != parent_desc):
|
||||
# element = {
|
||||
# 'text' : desc,
|
||||
# 'label': label2id[index], # ensure labels starts from 0
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
# # augmentation
|
||||
# # remove all non-alphanumerics
|
||||
# desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
|
||||
# if (desc != parent_desc):
|
||||
# element = {
|
||||
# 'text' : desc,
|
||||
# 'label': label2id[index], # ensure labels starts from 0
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset():
|
||||
# train
|
||||
|
||||
data_path = '../../../biomedical_data_import/bc2gm_train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
#########################################
|
||||
# training function
|
||||
|
||||
def train():
|
||||
|
||||
save_path = f'checkpoint'
|
||||
split_datasets = create_dataset()
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
||||
# model_checkpoint = 'prajjwal1/bert-small'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
truncation=True, # enable truncation for efficiency
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text", # we only need the tokenization, not the original strings
|
||||
)
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=512,
|
||||
# per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
warmup_steps=400,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator, # data_collator performs dynamic padding
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
train()
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1,280 @@
|
|||
# %%
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import random
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments,
|
||||
TrainerCallback
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from functools import partial
|
||||
import warnings
|
||||
|
||||
warnings.filterwarnings("ignore", message='Was asked to gather along dimension 0')
|
||||
warnings.filterwarnings("ignore", message='FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated.')
|
||||
|
||||
# import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
def set_seed(seed):
|
||||
"""
|
||||
Set the random seed for reproducibility.
|
||||
"""
|
||||
random.seed(seed) # Python random module
|
||||
np.random.seed(seed) # NumPy random
|
||||
torch.manual_seed(seed) # PyTorch CPU
|
||||
torch.cuda.manual_seed(seed) # PyTorch GPU
|
||||
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
|
||||
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
|
||||
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
|
||||
|
||||
set_seed(42)
|
||||
|
||||
# %%
|
||||
# PARAMETERS
|
||||
SAMPLES=20
|
||||
|
||||
# %%
|
||||
###################################################
|
||||
# import code
|
||||
# import training file
|
||||
data_path = '../../../biomedical_data_import/bc2gm_train.csv'
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
entity_ids = df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
df["training_id"] = df["entity_id"].map(label2id)
|
||||
|
||||
###############################################################
|
||||
# regeneration code
|
||||
# %%
|
||||
# we want to sample n samples from each class
|
||||
# sample_size refers to the number of samples per class
|
||||
def sample_from_df(df, sample_size_per_class=5):
|
||||
sampled_df = (df.groupby( "training_id")[['training_id', 'mention']] # explicit give column names
|
||||
.apply(lambda x: x.sample(n=min(sample_size_per_class, len(x))))
|
||||
.reset_index(drop=True))
|
||||
|
||||
return sampled_df
|
||||
|
||||
|
||||
# %%
|
||||
# augment whole dataset
|
||||
# for now, we just return the same df
|
||||
def augment_data(df):
|
||||
return df
|
||||
|
||||
# %%
|
||||
class DynamicDataset(Dataset):
|
||||
def __init__(self, df, sample_size_per_class, tokenizer):
|
||||
"""
|
||||
Args:
|
||||
df (pd.DataFrame): Original DataFrame with class (id) and data columns.
|
||||
sample_size_per_class (int): Number of samples to draw per class for each epoch.
|
||||
"""
|
||||
self.df = df
|
||||
self.sample_size_per_class = sample_size_per_class
|
||||
self.tokenizer = tokenizer
|
||||
self.current_data = None
|
||||
self.regenerate_data() # Generate the initial dataset
|
||||
|
||||
def regenerate_data(self):
|
||||
"""
|
||||
Generate a new sampled dataset for the current epoch.
|
||||
|
||||
dynamic callback function to regenerate data each time we call this
|
||||
method, it updates the current_data we can:
|
||||
|
||||
- re-sample the dataframe for a new set of n_samples
|
||||
- generate fresh augmentations this effectively
|
||||
|
||||
This allows us to re-sample and re-augment at the start of each epoch
|
||||
"""
|
||||
# Sample `sample_size_per_class` rows per class
|
||||
sampled_df = sample_from_df(self.df, self.sample_size_per_class)
|
||||
|
||||
# perform future edits here
|
||||
sampled_df = augment_data(sampled_df)
|
||||
|
||||
# perform tokenization here
|
||||
# Batch tokenize the entire column of data
|
||||
tokenized_batch = self.tokenizer(
|
||||
sampled_df["mention"].to_list(), # Pass all text data at once
|
||||
truncation=True,
|
||||
# return_tensors="pt" # disabled because pt requires equal length tensors
|
||||
)
|
||||
|
||||
# Store the tokenized data with labels
|
||||
self.current_data = [
|
||||
{
|
||||
"input_ids": torch.tensor(tokenized_batch["input_ids"][i]),
|
||||
"attention_mask": torch.tensor(tokenized_batch["attention_mask"][i]),
|
||||
"labels": torch.tensor(sampled_df.iloc[i]["training_id"]) # Include the label
|
||||
}
|
||||
for i in range(len(sampled_df))
|
||||
]
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.current_data)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.current_data[idx]
|
||||
|
||||
# %%
|
||||
class RegenerateDatasetCallback(TrainerCallback):
|
||||
def __init__(self, dataset, every_n_epochs=2):
|
||||
"""
|
||||
Args:
|
||||
dataset: The dataset instance that supports regeneration.
|
||||
every_n_epochs (int): Number of epochs to wait before regenerating the dataset.
|
||||
"""
|
||||
self.dataset = dataset
|
||||
self.every_n_epochs = every_n_epochs
|
||||
|
||||
def on_epoch_begin(self, args, state, control, **kwargs):
|
||||
# Check if the current epoch is a multiple of `every_n_epochs`
|
||||
if (state.epoch + 1) % self.every_n_epochs == 0:
|
||||
print(f"Epoch {int(state.epoch + 1)}: Regenerating dataset...")
|
||||
self.dataset.regenerate_data()
|
||||
|
||||
|
||||
# %%
|
||||
def custom_collate_fn(batch):
|
||||
# Dynamically pad tensors to the longest sequence in the batch
|
||||
input_ids = [item["input_ids"] for item in batch]
|
||||
attention_masks = [item["attention_mask"] for item in batch]
|
||||
labels = torch.stack([item["labels"] for item in batch])
|
||||
|
||||
# Pad inputs to the same length
|
||||
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=True)
|
||||
attention_masks = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True)
|
||||
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_masks,
|
||||
"labels": labels
|
||||
}
|
||||
|
||||
|
||||
##########################################################################
|
||||
# training code
|
||||
# %%
|
||||
def train():
|
||||
|
||||
save_path = f'checkpoint'
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
||||
# model_checkpoint = 'prajjwal1/bert-small'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, clean_up_tokenization_spaces=True)
|
||||
|
||||
# make the dataset
|
||||
|
||||
|
||||
# Define the callback
|
||||
# lean_df = df.drop(columns=['entity_name'])
|
||||
dynamic_dataset = DynamicDataset(df = df, sample_size_per_class=SAMPLES, tokenizer=tokenizer)
|
||||
|
||||
# create the regeneration callback
|
||||
regeneration_callback = RegenerateDatasetCallback(dynamic_dataset, every_n_epochs=2)
|
||||
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-4,
|
||||
per_device_train_batch_size=256,
|
||||
# per_device_eval_batch_size=256,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
warmup_steps=200,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=dynamic_dataset,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=custom_collate_fn,
|
||||
compute_metrics=compute_metrics,
|
||||
callbacks=[regeneration_callback]
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
train()
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
*******************************************************************************
|
||||
Accuracy: 0.15093
|
||||
F1 Score: 0.14063
|
||||
Precision: 0.15594
|
||||
Recall: 0.15093
|
|
@ -0,0 +1,246 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
BATCH_SIZE = 32
|
||||
|
||||
# %%
|
||||
# construct the target id list
|
||||
data_path = '../../../../biomedical_data_import/bc2gm_train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
entity_ids = train_df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
# target_id_list = [id for id in target_id_list]
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
|
||||
# introduce pre-processing functions
|
||||
def preprocess_text(text):
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# Substitute digits with '#'
|
||||
# text = re.sub(r'\d+', '#', text)
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def is_int_string(s):
|
||||
try:
|
||||
int(s)
|
||||
return True
|
||||
except ValueError:
|
||||
return False
|
||||
|
||||
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
row_id = row['entity_id']
|
||||
if not is_int_string(row_id):
|
||||
continue
|
||||
row_id = int(row_id)
|
||||
desc = row['mention']
|
||||
desc = preprocess_text(desc)
|
||||
element = {
|
||||
'text' : desc,
|
||||
'labels': label2id[row_id], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset():
|
||||
# train
|
||||
data_path = '../../../../biomedical_data_import/bc2gm_test.csv'
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'test': Dataset.from_list(process_df_to_dict(test_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
def test():
|
||||
|
||||
test_dataset = create_dataset()
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
checkpoint_directory = f'../checkpoint'
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# print datasets['test'] columns
|
||||
column_info = datasets['test'].features
|
||||
for column, dtype in column_info.items():
|
||||
print(f"Column: {column}, Type: {dtype}")
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model = model.eval()
|
||||
|
||||
device = torch.device('cuda:3' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
|
||||
pred_labels = []
|
||||
actual_labels = []
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
dataloader = DataLoader(
|
||||
datasets['test'],
|
||||
batch_size=BATCH_SIZE,
|
||||
shuffle=False,
|
||||
collate_fn=data_collator)
|
||||
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
actual_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
logits = model(
|
||||
input_ids,
|
||||
attention_mask).logits
|
||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||||
pred_labels.extend(predicted_class_ids)
|
||||
|
||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||
|
||||
|
||||
# %%
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
y_true = actual_labels
|
||||
y_pred = pred_labels
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
average_parameter = 'weighted'
|
||||
zero_division_parameter = 0
|
||||
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
print('*' * 80, file=f)
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
# export result
|
||||
label_list = [id2label[id] for id in pred_labels]
|
||||
df = pd.DataFrame({
|
||||
'class_prediction': pd.Series(label_list)
|
||||
})
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result.csv", index=False)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
test()
|
|
@ -0,0 +1,368 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import random
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
def set_seed(seed):
|
||||
"""
|
||||
Set the random seed for reproducibility.
|
||||
"""
|
||||
random.seed(seed) # Python random module
|
||||
np.random.seed(seed) # NumPy random
|
||||
torch.manual_seed(seed) # PyTorch CPU
|
||||
torch.cuda.manual_seed(seed) # PyTorch GPU
|
||||
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
|
||||
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
|
||||
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
|
||||
|
||||
set_seed(42)
|
||||
|
||||
SHUFFLES=0 # 0 shuffles means it does not re-sample
|
||||
|
||||
# %%
|
||||
|
||||
# We want to map the entity_id to a consecutive set of id's
|
||||
# import training file
|
||||
data_path = '../../biomedical_data_import/bc2gm_train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
entity_ids = train_df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
# %%
|
||||
# introduce pre-processing functions
|
||||
def preprocess_text(text):
|
||||
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# Substitute digits with 'x'
|
||||
# text = re.sub(r'\d+', '#', text)
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def generate_random_shuffles(text, n):
|
||||
"""
|
||||
Generate n strings with randomly shuffled words from the input text.
|
||||
|
||||
Args:
|
||||
text (str): The input text.
|
||||
n (int): The number of random variations to generate.
|
||||
|
||||
Returns:
|
||||
list: A list of strings with shuffled words.
|
||||
"""
|
||||
words = text.split() # Split the input into words
|
||||
shuffled_variations = []
|
||||
|
||||
for _ in range(n):
|
||||
shuffled = words[:] # Copy the word list to avoid in-place modification
|
||||
random.shuffle(shuffled) # Randomly shuffle the words
|
||||
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
|
||||
|
||||
return shuffled_variations
|
||||
|
||||
|
||||
# generate n more shuffled examples
|
||||
def shuffle_text(text, n_shuffles=SHUFFLES):
|
||||
"""
|
||||
Preprocess a list of texts and add n random shuffles for each string.
|
||||
|
||||
Args:
|
||||
texts (list): An input strings.
|
||||
n_shuffles (int): Number of random shuffles to generate for each string.
|
||||
|
||||
Returns:
|
||||
list: A list of preprocessed and shuffled strings.
|
||||
"""
|
||||
all_processed = []
|
||||
# add the original text
|
||||
all_processed.append(text)
|
||||
|
||||
# Generate random shuffles
|
||||
shuffled_variations = generate_random_shuffles(text, n_shuffles)
|
||||
all_processed.extend(shuffled_variations)
|
||||
|
||||
return all_processed
|
||||
|
||||
|
||||
######################################
|
||||
|
||||
# augmentation by text corruption
|
||||
|
||||
def corrupt_word(word):
|
||||
"""Corrupt a single word using random corruption techniques."""
|
||||
if len(word) <= 1: # Skip corruption for single-character words
|
||||
return word
|
||||
|
||||
corruption_type = random.choice(["delete", "swap"])
|
||||
|
||||
if corruption_type == "delete":
|
||||
# Randomly delete a character
|
||||
idx = random.randint(0, len(word) - 1)
|
||||
word = word[:idx] + word[idx + 1:]
|
||||
|
||||
elif corruption_type == "swap":
|
||||
# Swap two adjacent characters
|
||||
if len(word) > 1:
|
||||
idx = random.randint(0, len(word) - 2)
|
||||
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
|
||||
|
||||
|
||||
return word
|
||||
|
||||
def corrupt_string(sentence, corruption_probability=0.01):
|
||||
"""Corrupt each word in the string with a given probability."""
|
||||
words = sentence.split()
|
||||
corrupted_words = [
|
||||
corrupt_word(word) if random.random() < corruption_probability else word
|
||||
for word in words
|
||||
]
|
||||
return " ".join(corrupted_words)
|
||||
|
||||
|
||||
#############################################################
|
||||
# Data Run code here
|
||||
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
# produce shuffling
|
||||
index = row['entity_id']
|
||||
parent_desc = row['mention']
|
||||
if isinstance(parent_desc, float):
|
||||
print(parent_desc)
|
||||
parent_desc = f'{parent_desc}'
|
||||
parent_desc = preprocess_text(parent_desc)
|
||||
|
||||
# unaugmented data
|
||||
element = {
|
||||
'text' : parent_desc,
|
||||
'label': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
|
||||
# # short sequences are rare, and we must compensate by including more examples
|
||||
# # mutation of other longer sequences might drown out rare short sequences
|
||||
# words = parent_desc.split()
|
||||
# word_count = len(words)
|
||||
# if word_count < 3:
|
||||
# for _ in range(10):
|
||||
# element = {
|
||||
# 'text': parent_desc,
|
||||
# 'label': label2id[index],
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
# add shuffled strings
|
||||
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
|
||||
for desc in processed_descs:
|
||||
if (desc != parent_desc):
|
||||
element = {
|
||||
'text' : desc,
|
||||
'label': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
# # corrupt string
|
||||
# desc = corrupt_string(parent_desc, corruption_probability=0.1)
|
||||
# if (desc != parent_desc):
|
||||
# element = {
|
||||
# 'text' : desc,
|
||||
# 'label': label2id[index], # ensure labels starts from 0
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
# # augmentation
|
||||
# # remove all non-alphanumerics
|
||||
# desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
|
||||
# if (desc != parent_desc):
|
||||
# element = {
|
||||
# 'text' : desc,
|
||||
# 'label': label2id[index], # ensure labels starts from 0
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset():
|
||||
# train
|
||||
|
||||
data_path = '../../biomedical_data_import/bc2gm_train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
#########################################
|
||||
# training function
|
||||
|
||||
def train():
|
||||
|
||||
save_path = f'checkpoint'
|
||||
split_datasets = create_dataset()
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
||||
# model_checkpoint = 'prajjwal1/bert-small'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
|
||||
# max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
truncation=True, # enable truncation for efficiency
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text", # we only need the tokenization, not the original strings
|
||||
)
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=512,
|
||||
# per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
warmup_steps=400,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator, # data_collator performs dynamic padding
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
train()
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1 @@
|
|||
|
|
@ -0,0 +1,236 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
BATCH_SIZE = 256
|
||||
|
||||
# %%
|
||||
# construct the target id list
|
||||
data_path = '../../../biomedical_data_import/bc5cdr-chemical_train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
entity_ids = train_df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
# target_id_list = [id for id in target_id_list]
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
|
||||
# introduce pre-processing functions
|
||||
def preprocess_text(text):
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# Substitute digits with '#'
|
||||
# text = re.sub(r'\d+', '#', text)
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = row['mention']
|
||||
desc = preprocess_text(desc)
|
||||
row_id = row['entity_id']
|
||||
element = {
|
||||
'text' : desc,
|
||||
'labels': label2id[row_id], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset():
|
||||
# train
|
||||
data_path = '../../../biomedical_data_import/bc5cdr-chemical_test.csv'
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'test': Dataset.from_list(process_df_to_dict(test_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
def test():
|
||||
|
||||
test_dataset = create_dataset()
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
checkpoint_directory = f'../checkpoint'
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# print datasets['test'] columns
|
||||
column_info = datasets['test'].features
|
||||
for column, dtype in column_info.items():
|
||||
print(f"Column: {column}, Type: {dtype}")
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model = model.eval()
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
|
||||
pred_labels = []
|
||||
actual_labels = []
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
dataloader = DataLoader(
|
||||
datasets['test'],
|
||||
batch_size=BATCH_SIZE,
|
||||
shuffle=False,
|
||||
collate_fn=data_collator)
|
||||
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
actual_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
logits = model(
|
||||
input_ids,
|
||||
attention_mask).logits
|
||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||||
pred_labels.extend(predicted_class_ids)
|
||||
|
||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||
|
||||
|
||||
# %%
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
y_true = actual_labels
|
||||
y_pred = pred_labels
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
average_parameter = 'weighted'
|
||||
zero_division_parameter = 0
|
||||
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
print('*' * 80, file=f)
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
# export result
|
||||
label_list = [id2label[id] for id in pred_labels]
|
||||
df = pd.DataFrame({
|
||||
'class_prediction': pd.Series(label_list)
|
||||
})
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result.csv", index=False)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
test()
|
|
@ -0,0 +1,368 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import random
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
def set_seed(seed):
|
||||
"""
|
||||
Set the random seed for reproducibility.
|
||||
"""
|
||||
random.seed(seed) # Python random module
|
||||
np.random.seed(seed) # NumPy random
|
||||
torch.manual_seed(seed) # PyTorch CPU
|
||||
torch.cuda.manual_seed(seed) # PyTorch GPU
|
||||
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
|
||||
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
|
||||
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
|
||||
|
||||
set_seed(42)
|
||||
|
||||
SHUFFLES=0 # 0 shuffles means it does not re-sample
|
||||
|
||||
# %%
|
||||
|
||||
# We want to map the entity_id to a consecutive set of id's
|
||||
# import training file
|
||||
data_path = '../../biomedical_data_import/bc5cdr-chemical_train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
entity_ids = train_df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
# %%
|
||||
# introduce pre-processing functions
|
||||
def preprocess_text(text):
|
||||
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# Substitute digits with 'x'
|
||||
# text = re.sub(r'\d+', '#', text)
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def generate_random_shuffles(text, n):
|
||||
"""
|
||||
Generate n strings with randomly shuffled words from the input text.
|
||||
|
||||
Args:
|
||||
text (str): The input text.
|
||||
n (int): The number of random variations to generate.
|
||||
|
||||
Returns:
|
||||
list: A list of strings with shuffled words.
|
||||
"""
|
||||
words = text.split() # Split the input into words
|
||||
shuffled_variations = []
|
||||
|
||||
for _ in range(n):
|
||||
shuffled = words[:] # Copy the word list to avoid in-place modification
|
||||
random.shuffle(shuffled) # Randomly shuffle the words
|
||||
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
|
||||
|
||||
return shuffled_variations
|
||||
|
||||
|
||||
# generate n more shuffled examples
|
||||
def shuffle_text(text, n_shuffles=SHUFFLES):
|
||||
"""
|
||||
Preprocess a list of texts and add n random shuffles for each string.
|
||||
|
||||
Args:
|
||||
texts (list): An input strings.
|
||||
n_shuffles (int): Number of random shuffles to generate for each string.
|
||||
|
||||
Returns:
|
||||
list: A list of preprocessed and shuffled strings.
|
||||
"""
|
||||
all_processed = []
|
||||
# add the original text
|
||||
all_processed.append(text)
|
||||
|
||||
# Generate random shuffles
|
||||
shuffled_variations = generate_random_shuffles(text, n_shuffles)
|
||||
all_processed.extend(shuffled_variations)
|
||||
|
||||
return all_processed
|
||||
|
||||
|
||||
######################################
|
||||
|
||||
# augmentation by text corruption
|
||||
|
||||
def corrupt_word(word):
|
||||
"""Corrupt a single word using random corruption techniques."""
|
||||
if len(word) <= 1: # Skip corruption for single-character words
|
||||
return word
|
||||
|
||||
corruption_type = random.choice(["delete", "swap"])
|
||||
|
||||
if corruption_type == "delete":
|
||||
# Randomly delete a character
|
||||
idx = random.randint(0, len(word) - 1)
|
||||
word = word[:idx] + word[idx + 1:]
|
||||
|
||||
elif corruption_type == "swap":
|
||||
# Swap two adjacent characters
|
||||
if len(word) > 1:
|
||||
idx = random.randint(0, len(word) - 2)
|
||||
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
|
||||
|
||||
|
||||
return word
|
||||
|
||||
def corrupt_string(sentence, corruption_probability=0.01):
|
||||
"""Corrupt each word in the string with a given probability."""
|
||||
words = sentence.split()
|
||||
corrupted_words = [
|
||||
corrupt_word(word) if random.random() < corruption_probability else word
|
||||
for word in words
|
||||
]
|
||||
return " ".join(corrupted_words)
|
||||
|
||||
|
||||
#############################################################
|
||||
# Data Run code here
|
||||
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
# produce shuffling
|
||||
index = row['entity_id']
|
||||
parent_desc = row['mention']
|
||||
if isinstance(parent_desc, float):
|
||||
print(parent_desc)
|
||||
parent_desc = f'{parent_desc}'
|
||||
parent_desc = preprocess_text(parent_desc)
|
||||
|
||||
# unaugmented data
|
||||
element = {
|
||||
'text' : parent_desc,
|
||||
'labels': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
|
||||
# # short sequences are rare, and we must compensate by including more examples
|
||||
# # mutation of other longer sequences might drown out rare short sequences
|
||||
# words = parent_desc.split()
|
||||
# word_count = len(words)
|
||||
# if word_count < 3:
|
||||
# for _ in range(10):
|
||||
# element = {
|
||||
# 'text': parent_desc,
|
||||
# 'labels': label2id[index],
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
# add shuffled strings
|
||||
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
|
||||
for desc in processed_descs:
|
||||
if (desc != parent_desc):
|
||||
element = {
|
||||
'text' : desc,
|
||||
'labels': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
# # corrupt string
|
||||
# desc = corrupt_string(parent_desc, corruption_probability=0.1)
|
||||
# if (desc != parent_desc):
|
||||
# element = {
|
||||
# 'text' : desc,
|
||||
# 'labels': label2id[index], # ensure labels starts from 0
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
# # augmentation
|
||||
# # remove all non-alphanumerics
|
||||
# desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
|
||||
# if (desc != parent_desc):
|
||||
# element = {
|
||||
# 'text' : desc,
|
||||
# 'labels': label2id[index], # ensure labels starts from 0
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset():
|
||||
# train
|
||||
|
||||
data_path = '../../biomedical_data_import/bc5cdr-chemical.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
#########################################
|
||||
# training function
|
||||
|
||||
def train():
|
||||
|
||||
save_path = f'checkpoint'
|
||||
split_datasets = create_dataset()
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
||||
# model_checkpoint = 'prajjwal1/bert-small'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
|
||||
# max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
truncation=True, # enable truncation for efficiency
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text", # we only need the tokenization, not the original strings
|
||||
)
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=512,
|
||||
# per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
warmup_steps=400,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator, # data_collator performs dynamic padding
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
train()
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1 @@
|
|||
exports
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
*******************************************************************************
|
||||
Accuracy: 0.04872
|
||||
F1 Score: 0.04283
|
||||
Precision: 0.04903
|
||||
Recall: 0.04872
|
|
@ -0,0 +1,234 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
BATCH_SIZE = 32
|
||||
|
||||
# %%
|
||||
# construct the target id list
|
||||
data_path = '../../../../biomedical_data_import/bc5cdr-chemical_train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
entity_ids = train_df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
# target_id_list = [id for id in target_id_list]
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
|
||||
# introduce pre-processing functions
|
||||
def preprocess_text(text):
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# Substitute digits with '#'
|
||||
# text = re.sub(r'\d+', '#', text)
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = row['mention']
|
||||
desc = preprocess_text(desc)
|
||||
row_id = row['entity_id']
|
||||
element = {
|
||||
'text' : desc,
|
||||
'labels': label2id[row_id], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset():
|
||||
# train
|
||||
data_path = '../../../../biomedical_data_import/bc5cdr-chemical_test.csv'
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'test': Dataset.from_list(process_df_to_dict(test_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
def test():
|
||||
|
||||
test_dataset = create_dataset()
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
checkpoint_directory = f'../checkpoint'
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
column_info = datasets['test'].features
|
||||
for column, dtype in column_info.items():
|
||||
print(f"Column: {column}, Type: {dtype}")
|
||||
|
||||
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model = model.eval()
|
||||
|
||||
device = torch.device('cuda:3' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
|
||||
pred_labels = []
|
||||
actual_labels = []
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
dataloader = DataLoader(
|
||||
datasets['test'],
|
||||
batch_size=BATCH_SIZE,
|
||||
shuffle=False,
|
||||
collate_fn=data_collator)
|
||||
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
actual_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
logits = model(
|
||||
input_ids,
|
||||
attention_mask).logits
|
||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||||
pred_labels.extend(predicted_class_ids)
|
||||
|
||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||
|
||||
|
||||
# %%
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
y_true = actual_labels
|
||||
y_pred = pred_labels
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
average_parameter = 'weighted'
|
||||
zero_division_parameter = 0
|
||||
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
print('*' * 80, file=f)
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
# export result
|
||||
label_list = [id2label[id] for id in pred_labels]
|
||||
df = pd.DataFrame({
|
||||
'class_prediction': pd.Series(label_list)
|
||||
})
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result.csv", index=False)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
test()
|
|
@ -0,0 +1,367 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import random
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
def set_seed(seed):
|
||||
"""
|
||||
Set the random seed for reproducibility.
|
||||
"""
|
||||
random.seed(seed) # Python random module
|
||||
np.random.seed(seed) # NumPy random
|
||||
torch.manual_seed(seed) # PyTorch CPU
|
||||
torch.cuda.manual_seed(seed) # PyTorch GPU
|
||||
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
|
||||
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
|
||||
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
|
||||
|
||||
set_seed(42)
|
||||
|
||||
SHUFFLES=0 # 0 shuffles means it does not re-sample
|
||||
|
||||
# %%
|
||||
|
||||
# We want to map the entity_id to a consecutive set of id's
|
||||
# import training file
|
||||
data_path = '../../../biomedical_data_import/bc5cdr-chemical_train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
entity_ids = train_df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
# %%
|
||||
# introduce pre-processing functions
|
||||
def preprocess_text(text):
|
||||
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# Substitute digits with 'x'
|
||||
# text = re.sub(r'\d+', '#', text)
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def generate_random_shuffles(text, n):
|
||||
"""
|
||||
Generate n strings with randomly shuffled words from the input text.
|
||||
|
||||
Args:
|
||||
text (str): The input text.
|
||||
n (int): The number of random variations to generate.
|
||||
|
||||
Returns:
|
||||
list: A list of strings with shuffled words.
|
||||
"""
|
||||
words = text.split() # Split the input into words
|
||||
shuffled_variations = []
|
||||
|
||||
for _ in range(n):
|
||||
shuffled = words[:] # Copy the word list to avoid in-place modification
|
||||
random.shuffle(shuffled) # Randomly shuffle the words
|
||||
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
|
||||
|
||||
return shuffled_variations
|
||||
|
||||
|
||||
# generate n more shuffled examples
|
||||
def shuffle_text(text, n_shuffles=SHUFFLES):
|
||||
"""
|
||||
Preprocess a list of texts and add n random shuffles for each string.
|
||||
|
||||
Args:
|
||||
texts (list): An input strings.
|
||||
n_shuffles (int): Number of random shuffles to generate for each string.
|
||||
|
||||
Returns:
|
||||
list: A list of preprocessed and shuffled strings.
|
||||
"""
|
||||
all_processed = []
|
||||
# add the original text
|
||||
all_processed.append(text)
|
||||
|
||||
# Generate random shuffles
|
||||
shuffled_variations = generate_random_shuffles(text, n_shuffles)
|
||||
all_processed.extend(shuffled_variations)
|
||||
|
||||
return all_processed
|
||||
|
||||
|
||||
######################################
|
||||
|
||||
# augmentation by text corruption
|
||||
|
||||
def corrupt_word(word):
|
||||
"""Corrupt a single word using random corruption techniques."""
|
||||
if len(word) <= 1: # Skip corruption for single-character words
|
||||
return word
|
||||
|
||||
corruption_type = random.choice(["delete", "swap"])
|
||||
|
||||
if corruption_type == "delete":
|
||||
# Randomly delete a character
|
||||
idx = random.randint(0, len(word) - 1)
|
||||
word = word[:idx] + word[idx + 1:]
|
||||
|
||||
elif corruption_type == "swap":
|
||||
# Swap two adjacent characters
|
||||
if len(word) > 1:
|
||||
idx = random.randint(0, len(word) - 2)
|
||||
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
|
||||
|
||||
|
||||
return word
|
||||
|
||||
def corrupt_string(sentence, corruption_probability=0.01):
|
||||
"""Corrupt each word in the string with a given probability."""
|
||||
words = sentence.split()
|
||||
corrupted_words = [
|
||||
corrupt_word(word) if random.random() < corruption_probability else word
|
||||
for word in words
|
||||
]
|
||||
return " ".join(corrupted_words)
|
||||
|
||||
|
||||
#############################################################
|
||||
# Data Run code here
|
||||
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
# produce shuffling
|
||||
index = row['entity_id']
|
||||
parent_desc = row['mention']
|
||||
if isinstance(parent_desc, float):
|
||||
print(parent_desc)
|
||||
parent_desc = f'{parent_desc}'
|
||||
parent_desc = preprocess_text(parent_desc)
|
||||
|
||||
# unaugmented data
|
||||
element = {
|
||||
'text' : parent_desc,
|
||||
'labels': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
|
||||
# # short sequences are rare, and we must compensate by including more examples
|
||||
# # mutation of other longer sequences might drown out rare short sequences
|
||||
# words = parent_desc.split()
|
||||
# word_count = len(words)
|
||||
# if word_count < 3:
|
||||
# for _ in range(10):
|
||||
# element = {
|
||||
# 'text': parent_desc,
|
||||
# 'labels': label2id[index],
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
# add shuffled strings
|
||||
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
|
||||
for desc in processed_descs:
|
||||
if (desc != parent_desc):
|
||||
element = {
|
||||
'text' : desc,
|
||||
'labels': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
# # corrupt string
|
||||
# desc = corrupt_string(parent_desc, corruption_probability=0.1)
|
||||
# if (desc != parent_desc):
|
||||
# element = {
|
||||
# 'text' : desc,
|
||||
# 'labels': label2id[index], # ensure labels starts from 0
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
# # augmentation
|
||||
# # remove all non-alphanumerics
|
||||
# desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
|
||||
# if (desc != parent_desc):
|
||||
# element = {
|
||||
# 'text' : desc,
|
||||
# 'labels': label2id[index], # ensure labels starts from 0
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset():
|
||||
# train
|
||||
|
||||
data_path = '../../../biomedical_data_import/bc5cdr-chemical_train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
#########################################
|
||||
# training function
|
||||
|
||||
def train():
|
||||
|
||||
save_path = f'checkpoint'
|
||||
split_datasets = create_dataset()
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
||||
# model_checkpoint = 'prajjwal1/bert-small'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
|
||||
# max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
truncation=True, # enable truncation for efficiency
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text", # we only need the tokenization, not the original strings
|
||||
)
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=5e-5,
|
||||
per_device_train_batch_size=64,
|
||||
# per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
warmup_steps=400,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator, # data_collator performs dynamic padding
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
train()
|
||||
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1 @@
|
|||
exports
|
|
@ -0,0 +1 @@
|
|||
|
|
@ -0,0 +1,236 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
BATCH_SIZE = 256
|
||||
|
||||
# %%
|
||||
# construct the target id list
|
||||
data_path = '../../../biomedical_data_import/bc2gm_train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
entity_ids = train_df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
# target_id_list = [id for id in target_id_list]
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
|
||||
# introduce pre-processing functions
|
||||
def preprocess_text(text):
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# Substitute digits with '#'
|
||||
# text = re.sub(r'\d+', '#', text)
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = row['mention']
|
||||
desc = preprocess_text(desc)
|
||||
row_id = row['entity_id']
|
||||
element = {
|
||||
'text' : desc,
|
||||
'labels': label2id[row_id], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset():
|
||||
# train
|
||||
data_path = '../../../biomedical_data_import/bc2gm_test.csv'
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'test': Dataset.from_list(process_df_to_dict(test_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
def test():
|
||||
|
||||
test_dataset = create_dataset()
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
checkpoint_directory = f'../checkpoint'
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# print datasets['test'] columns
|
||||
column_info = datasets['test'].features
|
||||
for column, dtype in column_info.items():
|
||||
print(f"Column: {column}, Type: {dtype}")
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model = model.eval()
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
|
||||
pred_labels = []
|
||||
actual_labels = []
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
dataloader = DataLoader(
|
||||
datasets['test'],
|
||||
batch_size=BATCH_SIZE,
|
||||
shuffle=False,
|
||||
collate_fn=data_collator)
|
||||
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
actual_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
logits = model(
|
||||
input_ids,
|
||||
attention_mask).logits
|
||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||||
pred_labels.extend(predicted_class_ids)
|
||||
|
||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||
|
||||
|
||||
# %%
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
y_true = actual_labels
|
||||
y_pred = pred_labels
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
average_parameter = 'weighted'
|
||||
zero_division_parameter = 0
|
||||
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
print('*' * 80, file=f)
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
# export result
|
||||
label_list = [id2label[id] for id in pred_labels]
|
||||
df = pd.DataFrame({
|
||||
'class_prediction': pd.Series(label_list)
|
||||
})
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result.csv", index=False)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
test()
|
|
@ -0,0 +1,368 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import random
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
def set_seed(seed):
|
||||
"""
|
||||
Set the random seed for reproducibility.
|
||||
"""
|
||||
random.seed(seed) # Python random module
|
||||
np.random.seed(seed) # NumPy random
|
||||
torch.manual_seed(seed) # PyTorch CPU
|
||||
torch.cuda.manual_seed(seed) # PyTorch GPU
|
||||
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
|
||||
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
|
||||
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
|
||||
|
||||
set_seed(42)
|
||||
|
||||
SHUFFLES=0 # 0 shuffles means it does not re-sample
|
||||
|
||||
# %%
|
||||
|
||||
# We want to map the entity_id to a consecutive set of id's
|
||||
# import training file
|
||||
data_path = '../../biomedical_data_import/bc2gm_train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
entity_ids = train_df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
# %%
|
||||
# introduce pre-processing functions
|
||||
def preprocess_text(text):
|
||||
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# Substitute digits with 'x'
|
||||
# text = re.sub(r'\d+', '#', text)
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def generate_random_shuffles(text, n):
|
||||
"""
|
||||
Generate n strings with randomly shuffled words from the input text.
|
||||
|
||||
Args:
|
||||
text (str): The input text.
|
||||
n (int): The number of random variations to generate.
|
||||
|
||||
Returns:
|
||||
list: A list of strings with shuffled words.
|
||||
"""
|
||||
words = text.split() # Split the input into words
|
||||
shuffled_variations = []
|
||||
|
||||
for _ in range(n):
|
||||
shuffled = words[:] # Copy the word list to avoid in-place modification
|
||||
random.shuffle(shuffled) # Randomly shuffle the words
|
||||
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
|
||||
|
||||
return shuffled_variations
|
||||
|
||||
|
||||
# generate n more shuffled examples
|
||||
def shuffle_text(text, n_shuffles=SHUFFLES):
|
||||
"""
|
||||
Preprocess a list of texts and add n random shuffles for each string.
|
||||
|
||||
Args:
|
||||
texts (list): An input strings.
|
||||
n_shuffles (int): Number of random shuffles to generate for each string.
|
||||
|
||||
Returns:
|
||||
list: A list of preprocessed and shuffled strings.
|
||||
"""
|
||||
all_processed = []
|
||||
# add the original text
|
||||
all_processed.append(text)
|
||||
|
||||
# Generate random shuffles
|
||||
shuffled_variations = generate_random_shuffles(text, n_shuffles)
|
||||
all_processed.extend(shuffled_variations)
|
||||
|
||||
return all_processed
|
||||
|
||||
|
||||
######################################
|
||||
|
||||
# augmentation by text corruption
|
||||
|
||||
def corrupt_word(word):
|
||||
"""Corrupt a single word using random corruption techniques."""
|
||||
if len(word) <= 1: # Skip corruption for single-character words
|
||||
return word
|
||||
|
||||
corruption_type = random.choice(["delete", "swap"])
|
||||
|
||||
if corruption_type == "delete":
|
||||
# Randomly delete a character
|
||||
idx = random.randint(0, len(word) - 1)
|
||||
word = word[:idx] + word[idx + 1:]
|
||||
|
||||
elif corruption_type == "swap":
|
||||
# Swap two adjacent characters
|
||||
if len(word) > 1:
|
||||
idx = random.randint(0, len(word) - 2)
|
||||
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
|
||||
|
||||
|
||||
return word
|
||||
|
||||
def corrupt_string(sentence, corruption_probability=0.01):
|
||||
"""Corrupt each word in the string with a given probability."""
|
||||
words = sentence.split()
|
||||
corrupted_words = [
|
||||
corrupt_word(word) if random.random() < corruption_probability else word
|
||||
for word in words
|
||||
]
|
||||
return " ".join(corrupted_words)
|
||||
|
||||
|
||||
#############################################################
|
||||
# Data Run code here
|
||||
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
# produce shuffling
|
||||
index = row['entity_id']
|
||||
parent_desc = row['mention']
|
||||
if isinstance(parent_desc, float):
|
||||
print(parent_desc)
|
||||
parent_desc = f'{parent_desc}'
|
||||
parent_desc = preprocess_text(parent_desc)
|
||||
|
||||
# unaugmented data
|
||||
element = {
|
||||
'text' : parent_desc,
|
||||
'label': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
|
||||
# # short sequences are rare, and we must compensate by including more examples
|
||||
# # mutation of other longer sequences might drown out rare short sequences
|
||||
# words = parent_desc.split()
|
||||
# word_count = len(words)
|
||||
# if word_count < 3:
|
||||
# for _ in range(10):
|
||||
# element = {
|
||||
# 'text': parent_desc,
|
||||
# 'label': label2id[index],
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
# add shuffled strings
|
||||
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
|
||||
for desc in processed_descs:
|
||||
if (desc != parent_desc):
|
||||
element = {
|
||||
'text' : desc,
|
||||
'label': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
# # corrupt string
|
||||
# desc = corrupt_string(parent_desc, corruption_probability=0.1)
|
||||
# if (desc != parent_desc):
|
||||
# element = {
|
||||
# 'text' : desc,
|
||||
# 'label': label2id[index], # ensure labels starts from 0
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
# # augmentation
|
||||
# # remove all non-alphanumerics
|
||||
# desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
|
||||
# if (desc != parent_desc):
|
||||
# element = {
|
||||
# 'text' : desc,
|
||||
# 'label': label2id[index], # ensure labels starts from 0
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset():
|
||||
# train
|
||||
|
||||
data_path = '../../biomedical_data_import/bc2gm_train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
#########################################
|
||||
# training function
|
||||
|
||||
def train():
|
||||
|
||||
save_path = f'checkpoint'
|
||||
split_datasets = create_dataset()
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
||||
# model_checkpoint = 'prajjwal1/bert-small'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
|
||||
# max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
truncation=True, # enable truncation for efficiency
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text", # we only need the tokenization, not the original strings
|
||||
)
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=512,
|
||||
# per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
warmup_steps=400,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator, # data_collator performs dynamic padding
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
train()
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1 @@
|
|||
exports
|
|
@ -0,0 +1 @@
|
|||
|
|
@ -0,0 +1,236 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
BATCH_SIZE = 256
|
||||
|
||||
# %%
|
||||
# construct the target id list
|
||||
data_path = '../../../biomedical_data_import/bc2gm_train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
entity_ids = train_df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
# target_id_list = [id for id in target_id_list]
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
|
||||
# introduce pre-processing functions
|
||||
def preprocess_text(text):
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# Substitute digits with '#'
|
||||
# text = re.sub(r'\d+', '#', text)
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = row['mention']
|
||||
desc = preprocess_text(desc)
|
||||
row_id = row['entity_id']
|
||||
element = {
|
||||
'text' : desc,
|
||||
'labels': label2id[row_id], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset():
|
||||
# train
|
||||
data_path = '../../../biomedical_data_import/bc2gm_test.csv'
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'test': Dataset.from_list(process_df_to_dict(test_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
def test():
|
||||
|
||||
test_dataset = create_dataset()
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
checkpoint_directory = f'../checkpoint'
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# print datasets['test'] columns
|
||||
column_info = datasets['test'].features
|
||||
for column, dtype in column_info.items():
|
||||
print(f"Column: {column}, Type: {dtype}")
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model = model.eval()
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
|
||||
pred_labels = []
|
||||
actual_labels = []
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
dataloader = DataLoader(
|
||||
datasets['test'],
|
||||
batch_size=BATCH_SIZE,
|
||||
shuffle=False,
|
||||
collate_fn=data_collator)
|
||||
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
actual_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
logits = model(
|
||||
input_ids,
|
||||
attention_mask).logits
|
||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||||
pred_labels.extend(predicted_class_ids)
|
||||
|
||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||
|
||||
|
||||
# %%
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
y_true = actual_labels
|
||||
y_pred = pred_labels
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
average_parameter = 'weighted'
|
||||
zero_division_parameter = 0
|
||||
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
print('*' * 80, file=f)
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
# export result
|
||||
label_list = [id2label[id] for id in pred_labels]
|
||||
df = pd.DataFrame({
|
||||
'class_prediction': pd.Series(label_list)
|
||||
})
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result.csv", index=False)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
test()
|
|
@ -0,0 +1,368 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import random
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
def set_seed(seed):
|
||||
"""
|
||||
Set the random seed for reproducibility.
|
||||
"""
|
||||
random.seed(seed) # Python random module
|
||||
np.random.seed(seed) # NumPy random
|
||||
torch.manual_seed(seed) # PyTorch CPU
|
||||
torch.cuda.manual_seed(seed) # PyTorch GPU
|
||||
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
|
||||
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
|
||||
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
|
||||
|
||||
set_seed(42)
|
||||
|
||||
SHUFFLES=0 # 0 shuffles means it does not re-sample
|
||||
|
||||
# %%
|
||||
|
||||
# We want to map the entity_id to a consecutive set of id's
|
||||
# import training file
|
||||
data_path = '../../biomedical_data_import/bc2gm_train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
entity_ids = train_df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
# %%
|
||||
# introduce pre-processing functions
|
||||
def preprocess_text(text):
|
||||
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# Substitute digits with 'x'
|
||||
# text = re.sub(r'\d+', '#', text)
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def generate_random_shuffles(text, n):
|
||||
"""
|
||||
Generate n strings with randomly shuffled words from the input text.
|
||||
|
||||
Args:
|
||||
text (str): The input text.
|
||||
n (int): The number of random variations to generate.
|
||||
|
||||
Returns:
|
||||
list: A list of strings with shuffled words.
|
||||
"""
|
||||
words = text.split() # Split the input into words
|
||||
shuffled_variations = []
|
||||
|
||||
for _ in range(n):
|
||||
shuffled = words[:] # Copy the word list to avoid in-place modification
|
||||
random.shuffle(shuffled) # Randomly shuffle the words
|
||||
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
|
||||
|
||||
return shuffled_variations
|
||||
|
||||
|
||||
# generate n more shuffled examples
|
||||
def shuffle_text(text, n_shuffles=SHUFFLES):
|
||||
"""
|
||||
Preprocess a list of texts and add n random shuffles for each string.
|
||||
|
||||
Args:
|
||||
texts (list): An input strings.
|
||||
n_shuffles (int): Number of random shuffles to generate for each string.
|
||||
|
||||
Returns:
|
||||
list: A list of preprocessed and shuffled strings.
|
||||
"""
|
||||
all_processed = []
|
||||
# add the original text
|
||||
all_processed.append(text)
|
||||
|
||||
# Generate random shuffles
|
||||
shuffled_variations = generate_random_shuffles(text, n_shuffles)
|
||||
all_processed.extend(shuffled_variations)
|
||||
|
||||
return all_processed
|
||||
|
||||
|
||||
######################################
|
||||
|
||||
# augmentation by text corruption
|
||||
|
||||
def corrupt_word(word):
|
||||
"""Corrupt a single word using random corruption techniques."""
|
||||
if len(word) <= 1: # Skip corruption for single-character words
|
||||
return word
|
||||
|
||||
corruption_type = random.choice(["delete", "swap"])
|
||||
|
||||
if corruption_type == "delete":
|
||||
# Randomly delete a character
|
||||
idx = random.randint(0, len(word) - 1)
|
||||
word = word[:idx] + word[idx + 1:]
|
||||
|
||||
elif corruption_type == "swap":
|
||||
# Swap two adjacent characters
|
||||
if len(word) > 1:
|
||||
idx = random.randint(0, len(word) - 2)
|
||||
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
|
||||
|
||||
|
||||
return word
|
||||
|
||||
def corrupt_string(sentence, corruption_probability=0.01):
|
||||
"""Corrupt each word in the string with a given probability."""
|
||||
words = sentence.split()
|
||||
corrupted_words = [
|
||||
corrupt_word(word) if random.random() < corruption_probability else word
|
||||
for word in words
|
||||
]
|
||||
return " ".join(corrupted_words)
|
||||
|
||||
|
||||
#############################################################
|
||||
# Data Run code here
|
||||
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
# produce shuffling
|
||||
index = row['entity_id']
|
||||
parent_desc = row['mention']
|
||||
if isinstance(parent_desc, float):
|
||||
print(parent_desc)
|
||||
parent_desc = f'{parent_desc}'
|
||||
parent_desc = preprocess_text(parent_desc)
|
||||
|
||||
# unaugmented data
|
||||
element = {
|
||||
'text' : parent_desc,
|
||||
'label': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
|
||||
# # short sequences are rare, and we must compensate by including more examples
|
||||
# # mutation of other longer sequences might drown out rare short sequences
|
||||
# words = parent_desc.split()
|
||||
# word_count = len(words)
|
||||
# if word_count < 3:
|
||||
# for _ in range(10):
|
||||
# element = {
|
||||
# 'text': parent_desc,
|
||||
# 'label': label2id[index],
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
# add shuffled strings
|
||||
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
|
||||
for desc in processed_descs:
|
||||
if (desc != parent_desc):
|
||||
element = {
|
||||
'text' : desc,
|
||||
'label': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
# # corrupt string
|
||||
# desc = corrupt_string(parent_desc, corruption_probability=0.1)
|
||||
# if (desc != parent_desc):
|
||||
# element = {
|
||||
# 'text' : desc,
|
||||
# 'label': label2id[index], # ensure labels starts from 0
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
# # augmentation
|
||||
# # remove all non-alphanumerics
|
||||
# desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
|
||||
# if (desc != parent_desc):
|
||||
# element = {
|
||||
# 'text' : desc,
|
||||
# 'label': label2id[index], # ensure labels starts from 0
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset():
|
||||
# train
|
||||
|
||||
data_path = '../../biomedical_data_import/bc2gm_train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
#########################################
|
||||
# training function
|
||||
|
||||
def train():
|
||||
|
||||
save_path = f'checkpoint'
|
||||
split_datasets = create_dataset()
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
||||
# model_checkpoint = 'prajjwal1/bert-small'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
|
||||
# max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
truncation=True, # enable truncation for efficiency
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text", # we only need the tokenization, not the original strings
|
||||
)
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=512,
|
||||
# per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
warmup_steps=400,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator, # data_collator performs dynamic padding
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
train()
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,388 @@
|
|||
# %%
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import random
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments,
|
||||
TrainerCallback
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import math
|
||||
from functools import partial
|
||||
import warnings
|
||||
|
||||
warnings.filterwarnings("ignore", message='Was asked to gather along dimension 0')
|
||||
warnings.filterwarnings("ignore", message='FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated.')
|
||||
|
||||
# import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
def set_seed(seed):
|
||||
"""
|
||||
Set the random seed for reproducibility.
|
||||
"""
|
||||
random.seed(seed) # Python random module
|
||||
np.random.seed(seed) # NumPy random
|
||||
torch.manual_seed(seed) # PyTorch CPU
|
||||
torch.cuda.manual_seed(seed) # PyTorch GPU
|
||||
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
|
||||
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
|
||||
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
|
||||
|
||||
set_seed(42)
|
||||
|
||||
# %%
|
||||
# PARAMETERS
|
||||
SAMPLES=20
|
||||
SHUFFLES=5
|
||||
AMPLIFY_FACTOR=5
|
||||
|
||||
# %%
|
||||
###################################################
|
||||
# import code
|
||||
# import training file
|
||||
data_path = '../../esAppMod_data_import/train.csv'
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
entity_ids = df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
df["training_id"] = df["entity_id"].map(label2id)
|
||||
|
||||
# %%
|
||||
##############################################################
|
||||
# augmentation code
|
||||
|
||||
# basic preprocessing
|
||||
def preprocess_text(text):
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def generate_random_shuffles(text, n):
|
||||
words = text.split() # Split the input into words
|
||||
shuffled_variations = []
|
||||
|
||||
for _ in range(n):
|
||||
shuffled = words[:] # Copy the word list to avoid in-place modification
|
||||
random.shuffle(shuffled) # Randomly shuffle the words
|
||||
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
|
||||
|
||||
return shuffled_variations
|
||||
|
||||
|
||||
def shuffle_text(text, n_shuffles=SHUFFLES):
|
||||
all_processed = []
|
||||
# add the original text
|
||||
all_processed.append(text)
|
||||
|
||||
# Generate random shuffles
|
||||
shuffled_variations = generate_random_shuffles(text, n_shuffles)
|
||||
all_processed.extend(shuffled_variations)
|
||||
|
||||
return all_processed
|
||||
|
||||
def corrupt_word(word):
|
||||
"""Corrupt a single word using random corruption techniques."""
|
||||
if len(word) <= 1: # Skip corruption for single-character words
|
||||
return word
|
||||
|
||||
corruption_type = random.choice(["delete", "swap"])
|
||||
|
||||
if corruption_type == "delete":
|
||||
# Randomly delete a character
|
||||
idx = random.randint(0, len(word) - 1)
|
||||
word = word[:idx] + word[idx + 1:]
|
||||
|
||||
elif corruption_type == "swap":
|
||||
# Swap two adjacent characters
|
||||
if len(word) > 1:
|
||||
idx = random.randint(0, len(word) - 2)
|
||||
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
|
||||
|
||||
|
||||
return word
|
||||
|
||||
def corrupt_string(sentence, corruption_probability=0.01):
|
||||
"""Corrupt each word in the string with a given probability."""
|
||||
words = sentence.split()
|
||||
corrupted_words = [
|
||||
corrupt_word(word) if random.random() < corruption_probability else word
|
||||
for word in words
|
||||
]
|
||||
return " ".join(corrupted_words)
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
def create_example(index, mention):
|
||||
return {'training_id': index, 'mention': mention}
|
||||
|
||||
# augment whole dataset
|
||||
def augment_data(df):
|
||||
output_list = []
|
||||
|
||||
for idx,row in df.iterrows():
|
||||
index = row['training_id']
|
||||
parent_desc = row['mention']
|
||||
parent_desc = preprocess_text(parent_desc)
|
||||
|
||||
# add basic example
|
||||
output_list.append(create_example(index, parent_desc))
|
||||
|
||||
# add shuffled strings
|
||||
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
|
||||
for desc in processed_descs:
|
||||
if (desc != parent_desc):
|
||||
output_list.append(create_example(index, desc))
|
||||
|
||||
# add corrupted strings
|
||||
desc = corrupt_string(parent_desc, corruption_probability=0.1)
|
||||
if (desc != parent_desc):
|
||||
output_list.append(create_example(index, desc))
|
||||
|
||||
# add example with stripped non-alphanumerics
|
||||
desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
|
||||
if (desc != parent_desc):
|
||||
output_list.append(create_example(index, desc))
|
||||
|
||||
# short sequence amplifier
|
||||
# short sequences are rare, and we must compensate by including more examples
|
||||
# also, short sequence don't usually get affected by shuffle
|
||||
words = parent_desc.split()
|
||||
word_count = len(words)
|
||||
if word_count <= 2:
|
||||
for _ in range(AMPLIFY_FACTOR):
|
||||
output_list.append(create_example(index, desc))
|
||||
|
||||
new_df = pd.DataFrame(output_list)
|
||||
return new_df
|
||||
|
||||
|
||||
###############################################################
|
||||
# regeneration code
|
||||
# %%
|
||||
# we want to sample n samples from each class
|
||||
# sample_size refers to the number of samples per class
|
||||
def sample_from_df(df, sample_size_per_class=5):
|
||||
sampled_df = (df.groupby( "training_id")[['training_id', 'mention']] # explicit give column names
|
||||
.apply(lambda x: x.sample(n=min(sample_size_per_class, len(x))))
|
||||
.reset_index(drop=True))
|
||||
|
||||
return sampled_df
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
class DynamicDataset(Dataset):
|
||||
def __init__(self, df, sample_size_per_class, tokenizer):
|
||||
"""
|
||||
Args:
|
||||
df (pd.DataFrame): Original DataFrame with class (id) and data columns.
|
||||
sample_size_per_class (int): Number of samples to draw per class for each epoch.
|
||||
"""
|
||||
self.df = df
|
||||
self.sample_size_per_class = sample_size_per_class
|
||||
self.tokenizer = tokenizer
|
||||
self.current_data = None
|
||||
self.regenerate_data() # Generate the initial dataset
|
||||
|
||||
def regenerate_data(self):
|
||||
"""
|
||||
Generate a new sampled dataset for the current epoch.
|
||||
|
||||
dynamic callback function to regenerate data each time we call this
|
||||
method, it updates the current_data we can:
|
||||
|
||||
- re-sample the dataframe for a new set of n_samples
|
||||
- generate fresh augmentations this effectively
|
||||
|
||||
This allows us to re-sample and re-augment at the start of each epoch
|
||||
"""
|
||||
# Sample `sample_size_per_class` rows per class
|
||||
sampled_df = sample_from_df(self.df, self.sample_size_per_class)
|
||||
|
||||
# perform future edits here
|
||||
sampled_df = augment_data(sampled_df)
|
||||
|
||||
# perform tokenization here
|
||||
# Batch tokenize the entire column of data
|
||||
tokenized_batch = self.tokenizer(
|
||||
sampled_df["mention"].to_list(), # Pass all text data at once
|
||||
truncation=True,
|
||||
# return_tensors="pt" # disabled because pt requires equal length tensors
|
||||
)
|
||||
|
||||
# Store the tokenized data with labels
|
||||
self.current_data = [
|
||||
{
|
||||
"input_ids": torch.tensor(tokenized_batch["input_ids"][i]),
|
||||
"attention_mask": torch.tensor(tokenized_batch["attention_mask"][i]),
|
||||
"labels": torch.tensor(sampled_df.iloc[i]["training_id"]) # Include the label
|
||||
}
|
||||
for i in range(len(sampled_df))
|
||||
]
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.current_data)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.current_data[idx]
|
||||
|
||||
# %%
|
||||
class RegenerateDatasetCallback(TrainerCallback):
|
||||
def __init__(self, dataset):
|
||||
self.dataset = dataset
|
||||
|
||||
def on_epoch_begin(self, args, state, control, **kwargs):
|
||||
print(f"Epoch {int(math.ceil(state.epoch + 1))}: Regenerating dataset")
|
||||
self.dataset.regenerate_data()
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
def custom_collate_fn(batch):
|
||||
# Dynamically pad tensors to the longest sequence in the batch
|
||||
input_ids = [item["input_ids"] for item in batch]
|
||||
attention_masks = [item["attention_mask"] for item in batch]
|
||||
labels = torch.stack([item["labels"] for item in batch])
|
||||
|
||||
# Pad inputs to the same length
|
||||
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=True)
|
||||
attention_masks = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True)
|
||||
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_masks,
|
||||
"labels": labels
|
||||
}
|
||||
|
||||
|
||||
##########################################################################
|
||||
# training code
|
||||
# %%
|
||||
def train():
|
||||
|
||||
save_path = f'checkpoint'
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
||||
# model_checkpoint = 'prajjwal1/bert-small'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, clean_up_tokenization_spaces=True)
|
||||
|
||||
# make the dataset
|
||||
|
||||
|
||||
# Define the callback
|
||||
lean_df = df.drop(columns=['entity_name'])
|
||||
dynamic_dataset = DynamicDataset(df = lean_df, sample_size_per_class=SAMPLES, tokenizer=tokenizer)
|
||||
|
||||
# create the regeneration callback
|
||||
regeneration_callback = RegenerateDatasetCallback(dynamic_dataset)
|
||||
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
save_strategy="steps",
|
||||
save_steps=500,
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=5e-5,
|
||||
per_device_train_batch_size=64,
|
||||
# per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=120,
|
||||
warmup_steps=400,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=dynamic_dataset,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=custom_collate_fn,
|
||||
compute_metrics=compute_metrics,
|
||||
callbacks=[regeneration_callback]
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
train()
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1 @@
|
|||
exports
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
*******************************************************************************
|
||||
Accuracy: 0.76958
|
||||
F1 Score: 0.79382
|
||||
Precision: 0.88705
|
||||
Recall: 0.76958
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1 @@
|
|||
exports
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
*******************************************************************************
|
||||
Accuracy: 0.80689
|
||||
F1 Score: 0.82527
|
||||
Precision: 0.89684
|
||||
Recall: 0.80689
|
|
@ -0,0 +1,264 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
BATCH_SIZE = 256
|
||||
|
||||
# %%
|
||||
# construct the target id list
|
||||
# data_path = '../../../esAppMod_data_import/train.csv'
|
||||
data_path = '../../../esAppMod_data_import/train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
entity_ids = train_df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
|
||||
# introduce pre-processing functions
|
||||
def preprocess_text(text):
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# Substitute digits with '#'
|
||||
# text = re.sub(r'\d+', '#', text)
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = row['mention']
|
||||
desc = preprocess_text(desc)
|
||||
index = row['entity_id']
|
||||
element = {
|
||||
'text' : desc,
|
||||
'label': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset():
|
||||
# train
|
||||
data_path = '../../../esAppMod_data_import/test.csv'
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
# combined_data = DatasetDict({
|
||||
# 'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
# })
|
||||
return Dataset.from_list(process_df_to_dict(test_df))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
def test():
|
||||
|
||||
test_dataset = create_dataset()
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
checkpoint_directory = f'../checkpoint'
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
# additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
# tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
# %%
|
||||
# compute max token length
|
||||
max_length = 0
|
||||
for sample in test_dataset['text']:
|
||||
# Tokenize the sample and get the length
|
||||
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
|
||||
length = len(input_ids)
|
||||
|
||||
# Update max_length if this sample is longer
|
||||
if length > max_length:
|
||||
max_length = length
|
||||
|
||||
print(max_length)
|
||||
|
||||
# %%
|
||||
|
||||
max_length = 128
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
# truncation=True,
|
||||
padding='max_length'
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
# metric = evaluate.load("accuracy")
|
||||
#
|
||||
#
|
||||
# def compute_metrics(eval_preds):
|
||||
# preds, labels = eval_preds
|
||||
# preds = np.argmax(preds, axis=1)
|
||||
# return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model = model.eval()
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
|
||||
pred_labels = []
|
||||
actual_labels = []
|
||||
|
||||
|
||||
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
actual_labels.extend(batch['label'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
logits = model(
|
||||
input_ids,
|
||||
attention_mask).logits
|
||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||||
pred_labels.extend(predicted_class_ids)
|
||||
|
||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||
|
||||
|
||||
# %%
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
y_true = actual_labels
|
||||
y_pred = pred_labels
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
average_parameter = 'weighted'
|
||||
zero_division_parameter = 0
|
||||
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
print('*' * 80, file=f)
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
# export result
|
||||
label_list = [id2label[id] for id in pred_labels]
|
||||
df = pd.DataFrame({
|
||||
'class_prediction': pd.Series(label_list)
|
||||
})
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result.csv", index=False)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
test()
|
|
@ -0,0 +1,558 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import random
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
def set_seed(seed):
|
||||
"""
|
||||
Set the random seed for reproducibility.
|
||||
"""
|
||||
random.seed(seed) # Python random module
|
||||
np.random.seed(seed) # NumPy random
|
||||
torch.manual_seed(seed) # PyTorch CPU
|
||||
torch.cuda.manual_seed(seed) # PyTorch GPU
|
||||
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
|
||||
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
|
||||
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
|
||||
|
||||
set_seed(42)
|
||||
|
||||
SHUFFLES=5
|
||||
|
||||
# %%
|
||||
|
||||
# import training file
|
||||
data_path = '../../esAppMod_data_import/train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
entity_ids = train_df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
# %%
|
||||
# introduce pre-processing functions
|
||||
def preprocess_text(text):
|
||||
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# Substitute digits with 'x'
|
||||
# text = re.sub(r'\d+', '#', text)
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def generate_random_shuffles(text, n):
|
||||
"""
|
||||
Generate n strings with randomly shuffled words from the input text.
|
||||
|
||||
Args:
|
||||
text (str): The input text.
|
||||
n (int): The number of random variations to generate.
|
||||
|
||||
Returns:
|
||||
list: A list of strings with shuffled words.
|
||||
"""
|
||||
words = text.split() # Split the input into words
|
||||
shuffled_variations = []
|
||||
|
||||
for _ in range(n):
|
||||
shuffled = words[:] # Copy the word list to avoid in-place modification
|
||||
random.shuffle(shuffled) # Randomly shuffle the words
|
||||
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
|
||||
|
||||
return shuffled_variations
|
||||
|
||||
|
||||
# generate n more shuffled examples
|
||||
def shuffle_text(text, n_shuffles=SHUFFLES):
|
||||
"""
|
||||
Preprocess a list of texts and add n random shuffles for each string.
|
||||
|
||||
Args:
|
||||
texts (list): An input strings.
|
||||
n_shuffles (int): Number of random shuffles to generate for each string.
|
||||
|
||||
Returns:
|
||||
list: A list of preprocessed and shuffled strings.
|
||||
"""
|
||||
all_processed = []
|
||||
# add the original text
|
||||
all_processed.append(text)
|
||||
|
||||
# Generate random shuffles
|
||||
shuffled_variations = generate_random_shuffles(text, n_shuffles)
|
||||
all_processed.extend(shuffled_variations)
|
||||
|
||||
return all_processed
|
||||
|
||||
acronym_mapping = {
|
||||
'hpsa': 'hp server automation',
|
||||
'tam': 'tivoli access manager',
|
||||
'adf': 'application development facility',
|
||||
'html': 'hypertext markup language',
|
||||
'wff': 'microsoft web farm framework',
|
||||
'jsp': 'javaserver pages',
|
||||
'bw': 'business works',
|
||||
'ssrs': 'sql server reporting services',
|
||||
'cl': 'control language',
|
||||
'vba': 'visual basic for applications',
|
||||
'esapi': 'enterprise security api',
|
||||
'gwt': 'google web toolkit',
|
||||
'pki': 'perkin elmer informatics',
|
||||
'rtd': 'oracle realtime decisions',
|
||||
'jms': 'java message service',
|
||||
'db': 'database',
|
||||
'soa': 'service oriented architecture',
|
||||
'xsl': 'extensible stylesheet language',
|
||||
'com': 'compopent object model',
|
||||
'ldap': 'lightweight directory access protocol',
|
||||
'odm': 'ibm operational decision manager',
|
||||
'soql': 'salesforce object query language',
|
||||
'oms': 'order management system',
|
||||
'cfml': 'coldfusion markup language',
|
||||
'nas': 'netscape application server',
|
||||
'sql': 'structured query language',
|
||||
'bde': 'borland database engine',
|
||||
'imap': 'internet message access protocol',
|
||||
'uws': 'ultidev web server',
|
||||
'birt': 'business intelligence and reporting tools',
|
||||
'mdw': 'model driven workflow',
|
||||
'tws': 'tivoli workload scheduler',
|
||||
'jre': 'java runtime environment',
|
||||
'wcs': 'websphere commerce suite',
|
||||
'was': 'websphere application server',
|
||||
'ssis': 'sql server integration services',
|
||||
'xhtml': 'extensible hypertext markup language',
|
||||
'soap': 'simple object access protocol',
|
||||
'san': 'storage area network',
|
||||
'elk': 'elastic stack',
|
||||
'arr': 'application request routing',
|
||||
'xlst': 'extensible stylesheet language transformations',
|
||||
'sccm': 'microsoft endpoint configuration manager',
|
||||
'ejb': 'enterprise java beans',
|
||||
'css': 'cascading style sheets',
|
||||
'hpoo': 'hp operations orchestration',
|
||||
'xml': 'extensible markup language',
|
||||
'esb': 'enterprise service bus',
|
||||
'edi': 'electronic data interchange',
|
||||
'imsva': 'interscan messaging security virtual appliance',
|
||||
'wtx': 'ibm websphere transformation extender',
|
||||
'cgi': 'common gateway interface',
|
||||
'bal': 'ibm basic assembly language',
|
||||
'issow': 'integrated safe system of work',
|
||||
'dcl': 'data control language',
|
||||
'jdom': 'java document object model',
|
||||
'fim': 'microsoft forefront identity manager',
|
||||
'npl': 'niakwa programming language',
|
||||
'wf': 'windows workflow foundation',
|
||||
'lm': 'etap license manager',
|
||||
'wts': 'windows terminal server',
|
||||
'asp': 'active server pages',
|
||||
'jil': 'job information language',
|
||||
'mvc': 'model view controller',
|
||||
'rmi': 'remote method invocation',
|
||||
'ad': 'active directory',
|
||||
'owb': 'oracle warehouse builder',
|
||||
'rest': 'representational state transfer',
|
||||
'jdk': 'java development kit',
|
||||
'ids': 'integrated data store',
|
||||
'bms': 'batch management software',
|
||||
'vsx': 'vmware solution exchange',
|
||||
'ssas': 'sql server analysis services',
|
||||
'atl': 'atlas transformation language',
|
||||
'ice': 'infobright community edition',
|
||||
'esql': 'extended structured query language',
|
||||
'corba': 'common object request broker architecture',
|
||||
'dpe': 'device provisioning engines',
|
||||
'rac': 'oracle real application clusters',
|
||||
'iemt': 'iis easy migration tool',
|
||||
'mes': 'manufacturing execution system',
|
||||
'odbc': 'open database connectivity',
|
||||
'lms': 'lan management solution',
|
||||
'wcf': 'windows communication foundation',
|
||||
'nes': 'netscape enterprise server',
|
||||
'jsf': 'javaserver faces',
|
||||
'alm': 'application lifecycle management',
|
||||
'hlasm': 'high level assembler',
|
||||
'cmod': 'content manager ondemand'}
|
||||
|
||||
external_source = {
|
||||
'vb.net': 'visual basic dot net',
|
||||
'jes': 'job entry subsystem',
|
||||
'svn': 'subversion',
|
||||
'vcs': 'version control system',
|
||||
'lims': 'laboratory information management system',
|
||||
'ide': 'integrated development environment',
|
||||
'sdk': 'software development kit',
|
||||
'mq': 'message queue',
|
||||
'ims': 'information management system',
|
||||
'isa': 'internet security and acceleration',
|
||||
'vs': 'visual studio',
|
||||
'esr': 'extended support release',
|
||||
'ff': 'firefox',
|
||||
'vb': 'visual basic',
|
||||
'rhel': 'red hat enterprise linux',
|
||||
'iis': 'internet information server',
|
||||
'api': 'application programming interface',
|
||||
'se': 'standard edition',
|
||||
'\.net': 'dot net',
|
||||
'c#': 'c sharp'
|
||||
}
|
||||
|
||||
|
||||
# synonyms = {
|
||||
# 'windows server': 'windows nt',
|
||||
# 'windows 7': 'windows desktop',
|
||||
# 'windows 8': 'windows desktop',
|
||||
# 'windows 10': 'windows desktop'
|
||||
# }
|
||||
|
||||
|
||||
# add more information
|
||||
acronym_mapping.update(external_source)
|
||||
|
||||
|
||||
abbrev_to_term = {f'\b{key}\b': value for key, value in acronym_mapping.items()}
|
||||
term_to_abbrev = {f'\b{value}\b': key for key, value in acronym_mapping.items()}
|
||||
|
||||
def replace_terms_with_abbreviations(text):
|
||||
for input, replacement in term_to_abbrev.items():
|
||||
text = re.sub(input, replacement, text)
|
||||
return text
|
||||
|
||||
def replace_abbreviations_with_terms(text):
|
||||
for input, replacement in abbrev_to_term.items():
|
||||
text = re.sub(input, replacement, text)
|
||||
return text
|
||||
|
||||
######################################
|
||||
|
||||
# augmentation by text corruption
|
||||
|
||||
def corrupt_word(word):
|
||||
"""Corrupt a single word using random corruption techniques."""
|
||||
if len(word) <= 1: # Skip corruption for single-character words
|
||||
return word
|
||||
|
||||
corruption_type = random.choice(["delete", "swap"])
|
||||
|
||||
if corruption_type == "delete":
|
||||
# Randomly delete a character
|
||||
idx = random.randint(0, len(word) - 1)
|
||||
word = word[:idx] + word[idx + 1:]
|
||||
|
||||
elif corruption_type == "swap":
|
||||
# Swap two adjacent characters
|
||||
if len(word) > 1:
|
||||
idx = random.randint(0, len(word) - 2)
|
||||
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
|
||||
|
||||
|
||||
return word
|
||||
|
||||
def corrupt_string(sentence, corruption_probability=0.01):
|
||||
"""Corrupt each word in the string with a given probability."""
|
||||
words = sentence.split()
|
||||
corrupted_words = [
|
||||
corrupt_word(word) if random.random() < corruption_probability else word
|
||||
for word in words
|
||||
]
|
||||
return " ".join(corrupted_words)
|
||||
|
||||
|
||||
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
label_flag_list = []
|
||||
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
# produce shuffling
|
||||
index = row['entity_id']
|
||||
parent_desc = row['mention']
|
||||
parent_desc = preprocess_text(parent_desc)
|
||||
|
||||
# unaugmented data
|
||||
element = {
|
||||
'text' : parent_desc,
|
||||
'labels': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
# short sequences are rare, and we must compensate by including more examples
|
||||
# mutation of other longer sequences might drown out rare short sequences
|
||||
words = parent_desc.split()
|
||||
word_count = len(words)
|
||||
if word_count < 3:
|
||||
for _ in range(10):
|
||||
element = {
|
||||
'text': parent_desc,
|
||||
'label': label2id[index],
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
|
||||
# check if label is in label_flag_list
|
||||
if index not in label_flag_list:
|
||||
|
||||
entity_name = row['entity_name']
|
||||
# add the "entity_name" label as a mention
|
||||
element = {
|
||||
'text': entity_name,
|
||||
'labels': label2id[index],
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
# remove all non-alphanumerics
|
||||
desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
|
||||
if (desc != parent_desc):
|
||||
element = {
|
||||
'text' : desc,
|
||||
'labels': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
|
||||
# add shufles of the original entity name
|
||||
no_of_shuffles = SHUFFLES
|
||||
processed_descs = shuffle_text(entity_name, n_shuffles=no_of_shuffles)
|
||||
for desc in processed_descs:
|
||||
if (desc != parent_desc):
|
||||
element = {
|
||||
'text' : desc,
|
||||
'labels': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
label_flag_list.append(index)
|
||||
|
||||
|
||||
|
||||
# add shuffled strings
|
||||
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
|
||||
for desc in processed_descs:
|
||||
if (desc != parent_desc):
|
||||
element = {
|
||||
'text' : desc,
|
||||
'labels': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
# corrupt string
|
||||
desc = corrupt_string(parent_desc, corruption_probability=0.1)
|
||||
if (desc != parent_desc):
|
||||
element = {
|
||||
'text' : desc,
|
||||
'labels': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
|
||||
# augmentation
|
||||
# remove all non-alphanumerics
|
||||
desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
|
||||
if (desc != parent_desc):
|
||||
element = {
|
||||
'text' : desc,
|
||||
'labels': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
|
||||
# # augmentation
|
||||
# # perform abbrev_to_term
|
||||
# temp_desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
|
||||
# desc = replace_terms_with_abbreviations(temp_desc)
|
||||
# if (desc != temp_desc):
|
||||
# element = {
|
||||
# 'text' : desc,
|
||||
# 'label': label2id[index], # ensure labels starts from 0
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
# # augmentation
|
||||
# # perform term to abbrev
|
||||
# desc = replace_abbreviations_with_terms(parent_desc)
|
||||
# if (desc != parent_desc):
|
||||
# element = {
|
||||
# 'text' : desc,
|
||||
# 'label': label2id[index], # ensure labels starts from 0
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset():
|
||||
# train
|
||||
data_path = '../../esAppMod_data_import/train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
def train():
|
||||
|
||||
save_path = f'checkpoint'
|
||||
split_datasets = create_dataset()
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
||||
# model_checkpoint = 'prajjwal1/bert-small'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=5e-5,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
warmup_steps=400,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
train()
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1 @@
|
|||
exports
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1 @@
|
|||
exports
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1 @@
|
|||
exports
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
*******************************************************************************
|
||||
Accuracy: 0.80689
|
||||
F1 Score: 0.82527
|
||||
Precision: 0.89684
|
||||
Recall: 0.80689
|
|
@ -0,0 +1,264 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
BATCH_SIZE = 256
|
||||
|
||||
# %%
|
||||
# construct the target id list
|
||||
# data_path = '../../../esAppMod_data_import/train.csv'
|
||||
data_path = '../../../esAppMod_data_import/train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
entity_ids = train_df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
|
||||
# introduce pre-processing functions
|
||||
def preprocess_text(text):
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# Substitute digits with '#'
|
||||
# text = re.sub(r'\d+', '#', text)
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = row['mention']
|
||||
desc = preprocess_text(desc)
|
||||
index = row['entity_id']
|
||||
element = {
|
||||
'text' : desc,
|
||||
'label': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset():
|
||||
# train
|
||||
data_path = '../../../esAppMod_data_import/test.csv'
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
# combined_data = DatasetDict({
|
||||
# 'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
# })
|
||||
return Dataset.from_list(process_df_to_dict(test_df))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
def test():
|
||||
|
||||
test_dataset = create_dataset()
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
checkpoint_directory = f'../checkpoint'
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
# additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
# tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
# %%
|
||||
# compute max token length
|
||||
max_length = 0
|
||||
for sample in test_dataset['text']:
|
||||
# Tokenize the sample and get the length
|
||||
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
|
||||
length = len(input_ids)
|
||||
|
||||
# Update max_length if this sample is longer
|
||||
if length > max_length:
|
||||
max_length = length
|
||||
|
||||
print(max_length)
|
||||
|
||||
# %%
|
||||
|
||||
max_length = 128
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
# truncation=True,
|
||||
padding='max_length'
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
# metric = evaluate.load("accuracy")
|
||||
#
|
||||
#
|
||||
# def compute_metrics(eval_preds):
|
||||
# preds, labels = eval_preds
|
||||
# preds = np.argmax(preds, axis=1)
|
||||
# return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model = model.eval()
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
|
||||
pred_labels = []
|
||||
actual_labels = []
|
||||
|
||||
|
||||
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
actual_labels.extend(batch['label'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
logits = model(
|
||||
input_ids,
|
||||
attention_mask).logits
|
||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||||
pred_labels.extend(predicted_class_ids)
|
||||
|
||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||
|
||||
|
||||
# %%
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
y_true = actual_labels
|
||||
y_pred = pred_labels
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
average_parameter = 'weighted'
|
||||
zero_division_parameter = 0
|
||||
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
print('*' * 80, file=f)
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
# export result
|
||||
label_list = [id2label[id] for id in pred_labels]
|
||||
df = pd.DataFrame({
|
||||
'class_prediction': pd.Series(label_list)
|
||||
})
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result.csv", index=False)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
test()
|
|
@ -45,7 +45,7 @@ def set_seed(seed):
|
|||
|
||||
set_seed(42)
|
||||
|
||||
SHUFFLES=10
|
||||
SHUFFLES=5
|
||||
|
||||
# %%
|
||||
|
||||
|
@ -411,15 +411,15 @@ def process_df_to_dict(df):
|
|||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
# augmentation
|
||||
# perform term to abbrev
|
||||
desc = replace_abbreviations_with_terms(parent_desc)
|
||||
if (desc != parent_desc):
|
||||
element = {
|
||||
'text' : desc,
|
||||
'label': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
# # augmentation
|
||||
# # perform term to abbrev
|
||||
# desc = replace_abbreviations_with_terms(parent_desc)
|
||||
# if (desc != parent_desc):
|
||||
# element = {
|
||||
# 'text' : desc,
|
||||
# 'label': label2id[index], # ensure labels starts from 0
|
||||
# }
|
||||
# output_list.append(element)
|
||||
|
||||
|
||||
return output_list
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,273 @@
|
|||
# %%
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import random
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments,
|
||||
TrainerCallback
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from functools import partial
|
||||
import warnings
|
||||
|
||||
warnings.filterwarnings("ignore", message='Was asked to gather along dimension 0')
|
||||
warnings.filterwarnings("ignore", message='FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated.')
|
||||
|
||||
# import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
def set_seed(seed):
|
||||
"""
|
||||
Set the random seed for reproducibility.
|
||||
"""
|
||||
random.seed(seed) # Python random module
|
||||
np.random.seed(seed) # NumPy random
|
||||
torch.manual_seed(seed) # PyTorch CPU
|
||||
torch.cuda.manual_seed(seed) # PyTorch GPU
|
||||
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
|
||||
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
|
||||
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
|
||||
|
||||
set_seed(42)
|
||||
|
||||
# %%
|
||||
# PARAMETERS
|
||||
SAMPLES=20
|
||||
|
||||
# %%
|
||||
###################################################
|
||||
# import code
|
||||
# import training file
|
||||
data_path = '../../esAppMod_data_import/train.csv'
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
entity_ids = df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
df["training_id"] = df["entity_id"].map(label2id)
|
||||
|
||||
###############################################################
|
||||
# regeneration code
|
||||
# %%
|
||||
# we want to sample n samples from each class
|
||||
# sample_size refers to the number of samples per class
|
||||
def sample_from_df(df, sample_size_per_class=5):
|
||||
sampled_df = (df.groupby( "training_id")[['training_id', 'mention']] # explicit give column names
|
||||
.apply(lambda x: x.sample(n=min(sample_size_per_class, len(x))))
|
||||
.reset_index(drop=True))
|
||||
|
||||
return sampled_df
|
||||
|
||||
|
||||
# %%
|
||||
# augment whole dataset
|
||||
# for now, we just return the same df
|
||||
def augment_data(df):
|
||||
return df
|
||||
|
||||
# %%
|
||||
class DynamicDataset(Dataset):
|
||||
def __init__(self, df, sample_size_per_class, tokenizer):
|
||||
"""
|
||||
Args:
|
||||
df (pd.DataFrame): Original DataFrame with class (id) and data columns.
|
||||
sample_size_per_class (int): Number of samples to draw per class for each epoch.
|
||||
"""
|
||||
self.df = df
|
||||
self.sample_size_per_class = sample_size_per_class
|
||||
self.tokenizer = tokenizer
|
||||
self.current_data = None
|
||||
self.regenerate_data() # Generate the initial dataset
|
||||
|
||||
def regenerate_data(self):
|
||||
"""
|
||||
Generate a new sampled dataset for the current epoch.
|
||||
|
||||
dynamic callback function to regenerate data each time we call this
|
||||
method, it updates the current_data we can:
|
||||
|
||||
- re-sample the dataframe for a new set of n_samples
|
||||
- generate fresh augmentations this effectively
|
||||
|
||||
This allows us to re-sample and re-augment at the start of each epoch
|
||||
"""
|
||||
# Sample `sample_size_per_class` rows per class
|
||||
sampled_df = sample_from_df(self.df, self.sample_size_per_class)
|
||||
|
||||
# perform future edits here
|
||||
sampled_df = augment_data(sampled_df)
|
||||
|
||||
# perform tokenization here
|
||||
# Batch tokenize the entire column of data
|
||||
tokenized_batch = self.tokenizer(
|
||||
sampled_df["mention"].to_list(), # Pass all text data at once
|
||||
truncation=True,
|
||||
# return_tensors="pt" # disabled because pt requires equal length tensors
|
||||
)
|
||||
|
||||
# Store the tokenized data with labels
|
||||
self.current_data = [
|
||||
{
|
||||
"input_ids": torch.tensor(tokenized_batch["input_ids"][i]),
|
||||
"attention_mask": torch.tensor(tokenized_batch["attention_mask"][i]),
|
||||
"labels": torch.tensor(sampled_df.iloc[i]["training_id"]) # Include the label
|
||||
}
|
||||
for i in range(len(sampled_df))
|
||||
]
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.current_data)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.current_data[idx]
|
||||
|
||||
# %%
|
||||
class RegenerateDatasetCallback(TrainerCallback):
|
||||
def __init__(self, dataset):
|
||||
self.dataset = dataset
|
||||
|
||||
def on_epoch_begin(self, args, state, control, **kwargs):
|
||||
print(f"Epoch {state.epoch + 1}: Regenerating dataset")
|
||||
self.dataset.regenerate_data()
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
def custom_collate_fn(batch):
|
||||
# Dynamically pad tensors to the longest sequence in the batch
|
||||
input_ids = [item["input_ids"] for item in batch]
|
||||
attention_masks = [item["attention_mask"] for item in batch]
|
||||
labels = torch.stack([item["labels"] for item in batch])
|
||||
|
||||
# Pad inputs to the same length
|
||||
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=True)
|
||||
attention_masks = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True)
|
||||
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_masks,
|
||||
"labels": labels
|
||||
}
|
||||
|
||||
|
||||
##########################################################################
|
||||
# training code
|
||||
# %%
|
||||
def train():
|
||||
|
||||
save_path = f'checkpoint'
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
||||
# model_checkpoint = 'prajjwal1/bert-small'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, clean_up_tokenization_spaces=True)
|
||||
|
||||
# make the dataset
|
||||
|
||||
|
||||
# Define the callback
|
||||
lean_df = df.drop(columns=['entity_name'])
|
||||
dynamic_dataset = DynamicDataset(df = lean_df, sample_size_per_class=10, tokenizer=tokenizer)
|
||||
|
||||
# create the regeneration callback
|
||||
regeneration_callback = RegenerateDatasetCallback(dynamic_dataset)
|
||||
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=5e-5,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=120,
|
||||
warmup_steps=400,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=dynamic_dataset,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=custom_collate_fn,
|
||||
compute_metrics=compute_metrics,
|
||||
callbacks=[regeneration_callback]
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
train()
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1 @@
|
|||
exports
|
|
@ -0,0 +1 @@
|
|||
|
|
@ -0,0 +1,264 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
BATCH_SIZE = 256
|
||||
|
||||
# %%
|
||||
# construct the target id list
|
||||
# data_path = '../../../esAppMod_data_import/train.csv'
|
||||
data_path = '../../../esAppMod_data_import/train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
entity_ids = train_df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
|
||||
# introduce pre-processing functions
|
||||
def preprocess_text(text):
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# Substitute digits with '#'
|
||||
# text = re.sub(r'\d+', '#', text)
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = row['mention']
|
||||
desc = preprocess_text(desc)
|
||||
index = row['entity_id']
|
||||
element = {
|
||||
'text' : desc,
|
||||
'label': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset():
|
||||
# train
|
||||
data_path = '../../../esAppMod_data_import/test.csv'
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
# combined_data = DatasetDict({
|
||||
# 'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
# })
|
||||
return Dataset.from_list(process_df_to_dict(test_df))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
def test():
|
||||
|
||||
test_dataset = create_dataset()
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
checkpoint_directory = f'../checkpoint'
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
# additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
# tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
# %%
|
||||
# compute max token length
|
||||
max_length = 0
|
||||
for sample in test_dataset['text']:
|
||||
# Tokenize the sample and get the length
|
||||
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
|
||||
length = len(input_ids)
|
||||
|
||||
# Update max_length if this sample is longer
|
||||
if length > max_length:
|
||||
max_length = length
|
||||
|
||||
print(max_length)
|
||||
|
||||
# %%
|
||||
|
||||
max_length = 128
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
# truncation=True,
|
||||
padding='max_length'
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
# metric = evaluate.load("accuracy")
|
||||
#
|
||||
#
|
||||
# def compute_metrics(eval_preds):
|
||||
# preds, labels = eval_preds
|
||||
# preds = np.argmax(preds, axis=1)
|
||||
# return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model = model.eval()
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
|
||||
pred_labels = []
|
||||
actual_labels = []
|
||||
|
||||
|
||||
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
actual_labels.extend(batch['label'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
logits = model(
|
||||
input_ids,
|
||||
attention_mask).logits
|
||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||||
pred_labels.extend(predicted_class_ids)
|
||||
|
||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||
|
||||
|
||||
# %%
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
y_true = actual_labels
|
||||
y_pred = pred_labels
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
average_parameter = 'weighted'
|
||||
zero_division_parameter = 0
|
||||
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
print('*' * 80, file=f)
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
# export result
|
||||
label_list = [id2label[id] for id in pred_labels]
|
||||
df = pd.DataFrame({
|
||||
'class_prediction': pd.Series(label_list)
|
||||
})
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result.csv", index=False)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
test()
|
|
@ -0,0 +1,232 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import random
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
def set_seed(seed):
|
||||
"""
|
||||
Set the random seed for reproducibility.
|
||||
"""
|
||||
random.seed(seed) # Python random module
|
||||
np.random.seed(seed) # NumPy random
|
||||
torch.manual_seed(seed) # PyTorch CPU
|
||||
torch.cuda.manual_seed(seed) # PyTorch GPU
|
||||
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
|
||||
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
|
||||
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
|
||||
|
||||
set_seed(42)
|
||||
|
||||
SHUFFLES=5
|
||||
|
||||
# %%
|
||||
|
||||
# import training file
|
||||
data_path = '../../esAppMod_data_import/train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
entity_ids = train_df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
# %%
|
||||
# introduce pre-processing functions
|
||||
def preprocess_text(text):
|
||||
|
||||
# 1. Make all uppercase
|
||||
text = text.lower()
|
||||
|
||||
# standardize spacing
|
||||
text = re.sub(r'\s+', ' ', text).strip()
|
||||
|
||||
return text
|
||||
|
||||
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
# produce shuffling
|
||||
index = row['entity_id']
|
||||
parent_desc = row['mention']
|
||||
parent_desc = preprocess_text(parent_desc)
|
||||
|
||||
# unaugmented data
|
||||
element = {
|
||||
'text' : parent_desc,
|
||||
'labels': label2id[index], # ensure labels starts from 0
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset():
|
||||
# train
|
||||
data_path = '../../esAppMod_data_import/train.csv'
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
def train():
|
||||
|
||||
save_path = f'checkpoint'
|
||||
split_datasets = create_dataset()
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
||||
# model_checkpoint = 'prajjwal1/bert-small'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(target_id_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=5e-5,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
warmup_steps=400,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
train()
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1,188 @@
|
|||
# why?
|
||||
# the existing huggingface library does not allow for flexibility in changing
|
||||
# the training data between epochs
|
||||
|
||||
# this code example illustrates the use of dataset regeneration to make changes
|
||||
# to the training data between epochs
|
||||
# %%
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import re
|
||||
import random
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from functools import partial
|
||||
# import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
def set_seed(seed):
|
||||
"""
|
||||
Set the random seed for reproducibility.
|
||||
"""
|
||||
random.seed(seed) # Python random module
|
||||
np.random.seed(seed) # NumPy random
|
||||
torch.manual_seed(seed) # PyTorch CPU
|
||||
torch.cuda.manual_seed(seed) # PyTorch GPU
|
||||
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
|
||||
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
|
||||
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
|
||||
|
||||
set_seed(42)
|
||||
|
||||
# %%
|
||||
# PARAMETERS
|
||||
SAMPLES=5
|
||||
|
||||
# %%
|
||||
# import training file
|
||||
data_path = '../../esAppMod_data_import/train.csv'
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
entity_ids = df['entity_id'].to_list()
|
||||
target_id_list = sorted(list(set(entity_ids)))
|
||||
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(target_id_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
# %%
|
||||
# we want to sample n samples from each class
|
||||
# sample_size refers to the number of samples per class
|
||||
def sample_from_df(df, sample_size_per_class=5):
|
||||
sampled_df = (df.groupby( "entity_id")[['entity_id', 'mention']] # explicit give column names
|
||||
.apply(lambda x: x.sample(n=min(sample_size_per_class, len(x))))
|
||||
.reset_index(drop=True))
|
||||
|
||||
return sampled_df
|
||||
|
||||
|
||||
# %%
|
||||
# augment whole dataset
|
||||
# for now, we just return the same df
|
||||
def augment_data(df):
|
||||
return df
|
||||
|
||||
# %%
|
||||
class DynamicDataset(Dataset):
|
||||
def __init__(self, df, sample_size_per_class, tokenizer):
|
||||
"""
|
||||
Args:
|
||||
df (pd.DataFrame): Original DataFrame with class (id) and data columns.
|
||||
sample_size_per_class (int): Number of samples to draw per class for each epoch.
|
||||
"""
|
||||
self.df = df
|
||||
self.sample_size_per_class = sample_size_per_class
|
||||
self.tokenizer = tokenizer
|
||||
self.current_data = None
|
||||
self.regenerate_data() # Generate the initial dataset
|
||||
|
||||
def regenerate_data(self):
|
||||
"""
|
||||
Generate a new sampled dataset for the current epoch.
|
||||
|
||||
dynamic callback function to regenerate data each time we call this
|
||||
method, it updates the current_data we can:
|
||||
|
||||
- re-sample the dataframe for a new set of n_samples
|
||||
- generate fresh augmentations this effectively
|
||||
|
||||
This allows us to re-sample and re-augment at the start of each epoch
|
||||
"""
|
||||
# Sample `sample_size_per_class` rows per class
|
||||
sampled_df = sample_from_df(self.df, self.sample_size_per_class)
|
||||
|
||||
# perform future augmentations here
|
||||
sampled_df = augment_data(sampled_df)
|
||||
|
||||
# perform tokenization here
|
||||
# Batch tokenize the entire column of data
|
||||
tokenized_batch = self.tokenizer(
|
||||
sampled_df["mention"].to_list(), # Pass all text data at once
|
||||
truncation=True,
|
||||
# return_tensors="pt" # disabled because pt requires equal length tensors
|
||||
)
|
||||
|
||||
# Store the tokenized data with labels
|
||||
# we need to convert to torch tensors so that subsequent 'pad_sequence'
|
||||
# and 'stack' operations can work
|
||||
self.current_data = [
|
||||
{
|
||||
"input_ids": torch.tensor(tokenized_batch["input_ids"][i]),
|
||||
"attention_mask": torch.tensor(tokenized_batch["attention_mask"][i]),
|
||||
"labels": torch.tensor(sampled_df.iloc[i]["entity_id"]) # Include the label
|
||||
}
|
||||
for i in range(len(sampled_df))
|
||||
]
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.current_data)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
return self.current_data[idx]
|
||||
|
||||
|
||||
# %%
|
||||
# Dynamic dataset
|
||||
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", clean_up_tokenization_spaces=False)
|
||||
lean_df = df.drop(columns=['entity_name'])
|
||||
dynamic_dataset = DynamicDataset(df = lean_df, sample_size_per_class=10, tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# custom tokenization
|
||||
|
||||
# %%
|
||||
# Example usage of dynamic dataset
|
||||
sample = dynamic_dataset[0]
|
||||
print(sample)
|
||||
|
||||
|
||||
# %%
|
||||
def custom_collate_fn(batch):
|
||||
# Dynamically pad tensors to the longest sequence in the batch
|
||||
input_ids = [item["input_ids"] for item in batch]
|
||||
attention_masks = [item["attention_mask"] for item in batch]
|
||||
labels = torch.stack([item["labels"] for item in batch])
|
||||
|
||||
# Pad inputs to the same length
|
||||
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=True)
|
||||
attention_masks = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True)
|
||||
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_masks,
|
||||
"labels": labels
|
||||
}
|
||||
|
||||
|
||||
dataloader = DataLoader(
|
||||
dynamic_dataset,
|
||||
batch_size=32,
|
||||
collate_fn=custom_collate_fn
|
||||
)
|
||||
|
||||
# %%
|
Loading…
Reference in New Issue