Implemented dynamic data re-sampling at each epoch

This commit is contained in:
Richard Wong 2025-01-16 19:41:03 +09:00
parent 5312cfa06f
commit b6cf2d4416
80 changed files with 7050 additions and 14 deletions

View File

@ -0,0 +1,58 @@
# %%
import pandas as pd
# %%
#############################
# How much data
# data_path = '../biomedical_data_import/bc2gm_test.csv'
# data_path = '../biomedical_data_import/bc2gm_test.csv'
data_path = '../biomedical_data_import/bc5cdr-chemical_train.csv'
df = pd.read_csv(data_path)
len(df)
# %%
# %%
# bc2gm:
# train: 288939
# test: 1034
# %%
################################
# check for NA values
df[df['mention'].isna()]
# %%
##############################
# how many labels?
data_path = '../biomedical_data_import/bc2gm_test.csv'
df = pd.read_csv(data_path)
id_list = sorted(list(set(df['entity_id'].to_list())))
# %%
len(id_list)
# %%
for id in id_list:
if isinstance(id,int):
continue
else:
print(id)
# %%
# bc2gm:
# 61641 - holy shit
# %%
###############################
# max length
max_length = 0
for mention in df['mention']:
current_length = len(mention)
if current_length > max_length:
max_length = current_length
print(max_length)
# %%

View File

@ -0,0 +1,17 @@
# %%
from transformers import AutoTokenizer
import pandas as pd
data_path = '../biomedical_data_import/bc2gm_train.csv'
df = pd.DataFrame(data_path)
# Load the tokenizer (e.g., BERT tokenizer)
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# %%
# Calculate token lengths
df['token_length'] = df['mention'].apply(lambda x: len(tokenizer.tokenize(x)))
# Display the dataset with token lengths
print(df)

1
biomedical_data_import/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
*.csv

View File

@ -0,0 +1,36 @@
# %%
from collections import defaultdict
# %%
data_name = 'bc2gm' # and the other 3 names
train_path = 'test_dictionary.txt'
test_path = 'processed_test_refined'
# %%
vocab = defaultdict(set)
with open(f'../biomedical/{data_name}/{train_path}') as f:
for line in f:
term_list = line.strip().split('||')
vocab[term_list[0]].add(term_list[1].lower())
cui_to_id, id_to_cui = {}, {}
vocab_entity_id_mentions = {}
for id, cui in enumerate(vocab):
cui_to_id[cui] = id
id_to_cui[id] = cui
for cui, mention in vocab.items():
vocab_entity_id_mentions[cui_to_id[cui]] = mention
vocab_mentions, vocab_ids = [], []
for id, mentions in vocab_entity_id_mentions.items():
vocab_mentions.extend(mentions)
vocab_ids.extend([id]*len(mentions))
# %%
test_mentions, test_cuis = [], []
with open(f'../biomedical/{data_name}/{test_path}/0.concept') as f:
for line in f:
term_list = line.strip().split('||')
test_cuis.append(term_list[-1])
test_mentions.append(term_list[-2].lower())

View File

@ -0,0 +1,134 @@
# %%
import pandas as pd
from tqdm import tqdm
import multiprocessing
# %%
#########################
# we first process training data
def process_train_to_csv(data_path, output):
# data_path = '../esAppMod_data_import/parent_train.csv'
input_df = pd.read_csv(data_path, sep=f'\|\|', engine='python', skipinitialspace=True, header=None)
input_df = input_df.rename(columns={0: 'entity_id', 1: 'mention',})
# handle 'or' values in the number column
df = input_df.copy()
new_rows = []
for idx,row in df.iterrows():
index = row['entity_id']
mention = row['mention']
# omit nan values
if row['mention'] == 'NaN' or pd.isna(row['mention']):
df = df.drop(index=[idx])
continue
# handle possible multiple indices in index field
if '|' in row['entity_id']:
# print(row[0])
df = df.drop(index=[idx])
index_list = index.split('|')
for new_index in index_list:
element = {
'entity_id': new_index,
'mention': mention,
}
new_rows.append(element)
df_new = pd.DataFrame(new_rows, columns=df.columns)
df = pd.concat([df, df_new], ignore_index=True)
df = df.reset_index(drop=True)
df.to_csv(output, index=False)
# %%
name_list =[
('../biomedical/bc2gm/test_dictionary.txt', 'bc2gm_train.csv'),
('../biomedical/bc5cdr-chemical/test_dictionary.txt', 'bc5cdr-chemical_train.csv'),
('../biomedical/bc5cdr-disease/test_dictionary.txt', 'bc5cdr-disease_train.csv'),
('../biomedical/ncbi/test_dictionary.txt', 'ncbi_train.csv'),
]
# for data_path, output in name_list:
# process_train_to_csv(data_path, output)
if __name__ == "__main__":
# Create a pool of workers
num_workers = 4 # set number of cpus to use
with multiprocessing.Pool(num_workers) as pool:
# starmap
# an iterable of [(1,2), (3, 4)] results in [func(1,2), func(3,4)].
pool.starmap(process_train_to_csv, name_list)
# %%
#################################################
# process test data
def is_int_string(s):
try:
int(s)
return True
except ValueError:
return False
def process_test_to_csv(data_path, output):
# data_path = '../esAppMod_data_import/parent_train.csv'
input_df = pd.read_csv(data_path, sep=f'\|\|', engine='python', skipinitialspace=True, header=None)
input_df = input_df.drop(columns=[0, 1, 2])
input_df = input_df.rename(columns={3: 'mention', 4: 'entity_id'})
# handle 'or' values in the number column
df = input_df.copy()
new_rows = []
for idx,row in df.iterrows():
# handle possible multiple indices
if '|' in row['entity_id']:
index = row['entity_id']
mention = row['mention']
df = df.drop(index=[idx])
index_list = index.split('|')
for new_index in index_list:
element = {
'entity_id': new_index,
'mention': mention,
}
new_rows.append(element)
df_new = pd.DataFrame(new_rows, columns=df.columns)
df = pd.concat([df, df_new], ignore_index=True)
df = df.reset_index(drop=True)
# do some cleanup
df['entity_id'].isna()
df.to_csv(output, index=False)
# %%
name_list =[
('../biomedical/bc2gm/processed_test_refined/0.concept', 'bc2gm_test.csv'),
('../biomedical/bc5cdr-chemical/processed_test_refined/0.concept', 'bc5cdr-chemical_test.csv'),
('../biomedical/bc5cdr-disease/processed_test_refined/0.concept', 'bc5cdr-disease_test.csv'),
('../biomedical/ncbi/processed_test_refined/0.concept', 'ncbi_test.csv'),
]
# for data_path, output in name_list:
# process_test_to_csv(data_path, output)
if __name__ == "__main__":
# Create a pool of workers
num_workers = 4 # set number of cpus to use
with multiprocessing.Pool(num_workers) as pool:
# starmap
# an iterable of [(1,2), (3, 4)] results in [func(1,2), func(3,4)].
pool.starmap(process_test_to_csv, name_list)
# %%
# %%

View File

@ -0,0 +1,388 @@
# %%
from torch.utils.data import Dataset, DataLoader
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import random
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments,
TrainerCallback
)
import evaluate
import numpy as np
import pandas as pd
import math
from functools import partial
import warnings
warnings.filterwarnings("ignore", message='Was asked to gather along dimension 0')
warnings.filterwarnings("ignore", message='FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated.')
# import matplotlib.pyplot as plt
torch.set_float32_matmul_precision('high')
def set_seed(seed):
"""
Set the random seed for reproducibility.
"""
random.seed(seed) # Python random module
np.random.seed(seed) # NumPy random
torch.manual_seed(seed) # PyTorch CPU
torch.cuda.manual_seed(seed) # PyTorch GPU
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
set_seed(42)
# %%
# PARAMETERS
SAMPLES=20
SHUFFLES=5
AMPLIFY_FACTOR=5
# %%
###################################################
# import code
# import training file
data_path = '../../esAppMod_data_import/train.csv'
df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
df["training_id"] = df["entity_id"].map(label2id)
# %%
##############################################################
# augmentation code
# basic preprocessing
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
def generate_random_shuffles(text, n):
words = text.split() # Split the input into words
shuffled_variations = []
for _ in range(n):
shuffled = words[:] # Copy the word list to avoid in-place modification
random.shuffle(shuffled) # Randomly shuffle the words
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
return shuffled_variations
def shuffle_text(text, n_shuffles=SHUFFLES):
all_processed = []
# add the original text
all_processed.append(text)
# Generate random shuffles
shuffled_variations = generate_random_shuffles(text, n_shuffles)
all_processed.extend(shuffled_variations)
return all_processed
def corrupt_word(word):
"""Corrupt a single word using random corruption techniques."""
if len(word) <= 1: # Skip corruption for single-character words
return word
corruption_type = random.choice(["delete", "swap"])
if corruption_type == "delete":
# Randomly delete a character
idx = random.randint(0, len(word) - 1)
word = word[:idx] + word[idx + 1:]
elif corruption_type == "swap":
# Swap two adjacent characters
if len(word) > 1:
idx = random.randint(0, len(word) - 2)
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
return word
def corrupt_string(sentence, corruption_probability=0.01):
"""Corrupt each word in the string with a given probability."""
words = sentence.split()
corrupted_words = [
corrupt_word(word) if random.random() < corruption_probability else word
for word in words
]
return " ".join(corrupted_words)
# %%
def create_example(index, mention):
return {'training_id': index, 'mention': mention}
# augment whole dataset
def augment_data(df):
output_list = []
for idx,row in df.iterrows():
index = row['training_id']
parent_desc = row['mention']
parent_desc = preprocess_text(parent_desc)
# add basic example
output_list.append(create_example(index, parent_desc))
# add shuffled strings
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
for desc in processed_descs:
if (desc != parent_desc):
output_list.append(create_example(index, desc))
# add corrupted strings
desc = corrupt_string(parent_desc, corruption_probability=0.1)
if (desc != parent_desc):
output_list.append(create_example(index, desc))
# add example with stripped non-alphanumerics
desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
if (desc != parent_desc):
output_list.append(create_example(index, desc))
# short sequence amplifier
# short sequences are rare, and we must compensate by including more examples
# also, short sequence don't usually get affected by shuffle
words = parent_desc.split()
word_count = len(words)
if word_count <= 2:
for _ in range(AMPLIFY_FACTOR):
output_list.append(create_example(index, desc))
new_df = pd.DataFrame(output_list)
return new_df
###############################################################
# regeneration code
# %%
# we want to sample n samples from each class
# sample_size refers to the number of samples per class
def sample_from_df(df, sample_size_per_class=5):
sampled_df = (df.groupby( "training_id")[['training_id', 'mention']] # explicit give column names
.apply(lambda x: x.sample(n=min(sample_size_per_class, len(x))))
.reset_index(drop=True))
return sampled_df
# %%
class DynamicDataset(Dataset):
def __init__(self, df, sample_size_per_class, tokenizer):
"""
Args:
df (pd.DataFrame): Original DataFrame with class (id) and data columns.
sample_size_per_class (int): Number of samples to draw per class for each epoch.
"""
self.df = df
self.sample_size_per_class = sample_size_per_class
self.tokenizer = tokenizer
self.current_data = None
self.regenerate_data() # Generate the initial dataset
def regenerate_data(self):
"""
Generate a new sampled dataset for the current epoch.
dynamic callback function to regenerate data each time we call this
method, it updates the current_data we can:
- re-sample the dataframe for a new set of n_samples
- generate fresh augmentations this effectively
This allows us to re-sample and re-augment at the start of each epoch
"""
# Sample `sample_size_per_class` rows per class
sampled_df = sample_from_df(self.df, self.sample_size_per_class)
# perform future edits here
sampled_df = augment_data(sampled_df)
# perform tokenization here
# Batch tokenize the entire column of data
tokenized_batch = self.tokenizer(
sampled_df["mention"].to_list(), # Pass all text data at once
truncation=True,
# return_tensors="pt" # disabled because pt requires equal length tensors
)
# Store the tokenized data with labels
self.current_data = [
{
"input_ids": torch.tensor(tokenized_batch["input_ids"][i]),
"attention_mask": torch.tensor(tokenized_batch["attention_mask"][i]),
"labels": torch.tensor(sampled_df.iloc[i]["training_id"]) # Include the label
}
for i in range(len(sampled_df))
]
def __len__(self):
return len(self.current_data)
def __getitem__(self, idx):
return self.current_data[idx]
# %%
class RegenerateDatasetCallback(TrainerCallback):
def __init__(self, dataset):
self.dataset = dataset
def on_epoch_begin(self, args, state, control, **kwargs):
print(f"Epoch {int(math.ceil(state.epoch + 1))}: Regenerating dataset")
self.dataset.regenerate_data()
# %%
def custom_collate_fn(batch):
# Dynamically pad tensors to the longest sequence in the batch
input_ids = [item["input_ids"] for item in batch]
attention_masks = [item["attention_mask"] for item in batch]
labels = torch.stack([item["labels"] for item in batch])
# Pad inputs to the same length
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=True)
attention_masks = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True)
return {
"input_ids": input_ids,
"attention_mask": attention_masks,
"labels": labels
}
##########################################################################
# training code
# %%
def train():
save_path = f'checkpoint'
# prepare tokenizer
model_checkpoint = "distilbert/distilbert-base-uncased"
# model_checkpoint = 'google-bert/bert-base-cased'
# model_checkpoint = 'prajjwal1/bert-small'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, clean_up_tokenization_spaces=True)
# make the dataset
# Define the callback
lean_df = df.drop(columns=['entity_name'])
dynamic_dataset = DynamicDataset(df = lean_df, sample_size_per_class=10, tokenizer=tokenizer)
# create the regeneration callback
regeneration_callback = RegenerateDatasetCallback(dynamic_dataset)
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
save_strategy="steps",
save_steps=500,
load_best_model_at_end=False,
learning_rate=5e-5,
per_device_train_batch_size=64,
# per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=120,
warmup_steps=400,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=dynamic_dataset,
tokenizer=tokenizer,
data_collator=custom_collate_fn,
compute_metrics=compute_metrics,
callbacks=[regeneration_callback]
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
train()
# %%

View File

@ -1,6 +1,6 @@
******************************************************************************* *******************************************************************************
Accuracy: 0.80197 Accuracy: 0.80655
F1 Score: 0.81948 F1 Score: 0.82821
Precision: 0.88067 Precision: 0.87847
Recall: 0.80197 Recall: 0.80655

View File

@ -0,0 +1,236 @@
# %%
# from datasets import load_from_disk
import os
import glob
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import torch
from torch.utils.data import DataLoader
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
from tqdm import tqdm
torch.set_float32_matmul_precision('high')
BATCH_SIZE = 32
# %%
# construct the target id list
data_path = '../../../biomedical_data_import/bc2gm_train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# target_id_list = [id for id in target_id_list]
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# Substitute digits with '#'
# text = re.sub(r'\d+', '#', text)
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
desc = row['mention']
desc = preprocess_text(desc)
row_id = row['entity_id']
element = {
'text' : desc,
'labels': label2id[row_id], # ensure labels starts from 0
}
output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../../../biomedical_data_import/bc2gm_test.csv'
test_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'test': Dataset.from_list(process_df_to_dict(test_df)),
})
return combined_data
# %%
def test():
test_dataset = create_dataset()
# prepare tokenizer
checkpoint_directory = f'../checkpoint'
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# %%
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
truncation=True,
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
# print datasets['test'] columns
column_info = datasets['test'].features
for column, dtype in column_info.items():
print(f"Column: {column}, Type: {dtype}")
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
model = model.eval()
device = torch.device('cuda:3' if torch.cuda.is_available() else 'cpu')
model.to(device)
pred_labels = []
actual_labels = []
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
dataloader = DataLoader(
datasets['test'],
batch_size=BATCH_SIZE,
shuffle=False,
collate_fn=data_collator)
for batch in tqdm(dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
actual_labels.extend(batch['labels'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Perform inference
with torch.no_grad():
logits = model(
input_ids,
attention_mask).logits
predicted_class_ids = logits.argmax(dim=1).to("cpu")
pred_labels.extend(predicted_class_ids)
pred_labels = [tensor.item() for tensor in pred_labels]
# %%
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
y_true = actual_labels
y_pred = pred_labels
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
average_parameter = 'weighted'
zero_division_parameter = 0
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
with open("output.txt", "a") as f:
print('*' * 80, file=f)
# Print the results
print(f'Accuracy: {accuracy:.5f}', file=f)
print(f'F1 Score: {f1:.5f}', file=f)
print(f'Precision: {precision:.5f}', file=f)
print(f'Recall: {recall:.5f}', file=f)
# export result
label_list = [id2label[id] for id in pred_labels]
df = pd.DataFrame({
'class_prediction': pd.Series(label_list)
})
# we can save the t5 generation output here
df.to_csv(f"exports/result.csv", index=False)
# %%
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
test()

View File

@ -0,0 +1,367 @@
# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import random
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# %%
def set_seed(seed):
"""
Set the random seed for reproducibility.
"""
random.seed(seed) # Python random module
np.random.seed(seed) # NumPy random
torch.manual_seed(seed) # PyTorch CPU
torch.cuda.manual_seed(seed) # PyTorch GPU
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
set_seed(42)
SHUFFLES=0 # 0 shuffles means it does not re-sample
# %%
# We want to map the entity_id to a consecutive set of id's
# import training file
data_path = '../../../biomedical_data_import/bc2gm_train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# %%
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# Substitute digits with 'x'
# text = re.sub(r'\d+', '#', text)
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
def generate_random_shuffles(text, n):
"""
Generate n strings with randomly shuffled words from the input text.
Args:
text (str): The input text.
n (int): The number of random variations to generate.
Returns:
list: A list of strings with shuffled words.
"""
words = text.split() # Split the input into words
shuffled_variations = []
for _ in range(n):
shuffled = words[:] # Copy the word list to avoid in-place modification
random.shuffle(shuffled) # Randomly shuffle the words
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
return shuffled_variations
# generate n more shuffled examples
def shuffle_text(text, n_shuffles=SHUFFLES):
"""
Preprocess a list of texts and add n random shuffles for each string.
Args:
texts (list): An input strings.
n_shuffles (int): Number of random shuffles to generate for each string.
Returns:
list: A list of preprocessed and shuffled strings.
"""
all_processed = []
# add the original text
all_processed.append(text)
# Generate random shuffles
shuffled_variations = generate_random_shuffles(text, n_shuffles)
all_processed.extend(shuffled_variations)
return all_processed
######################################
# augmentation by text corruption
def corrupt_word(word):
"""Corrupt a single word using random corruption techniques."""
if len(word) <= 1: # Skip corruption for single-character words
return word
corruption_type = random.choice(["delete", "swap"])
if corruption_type == "delete":
# Randomly delete a character
idx = random.randint(0, len(word) - 1)
word = word[:idx] + word[idx + 1:]
elif corruption_type == "swap":
# Swap two adjacent characters
if len(word) > 1:
idx = random.randint(0, len(word) - 2)
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
return word
def corrupt_string(sentence, corruption_probability=0.01):
"""Corrupt each word in the string with a given probability."""
words = sentence.split()
corrupted_words = [
corrupt_word(word) if random.random() < corruption_probability else word
for word in words
]
return " ".join(corrupted_words)
#############################################################
# Data Run code here
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
# produce shuffling
index = row['entity_id']
parent_desc = row['mention']
if isinstance(parent_desc, float):
print(parent_desc)
parent_desc = f'{parent_desc}'
parent_desc = preprocess_text(parent_desc)
# unaugmented data
element = {
'text' : parent_desc,
'label': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# # short sequences are rare, and we must compensate by including more examples
# # mutation of other longer sequences might drown out rare short sequences
# words = parent_desc.split()
# word_count = len(words)
# if word_count < 3:
# for _ in range(10):
# element = {
# 'text': parent_desc,
# 'label': label2id[index],
# }
# output_list.append(element)
# add shuffled strings
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
for desc in processed_descs:
if (desc != parent_desc):
element = {
'text' : desc,
'label': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# # corrupt string
# desc = corrupt_string(parent_desc, corruption_probability=0.1)
# if (desc != parent_desc):
# element = {
# 'text' : desc,
# 'label': label2id[index], # ensure labels starts from 0
# }
# output_list.append(element)
# # augmentation
# # remove all non-alphanumerics
# desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
# if (desc != parent_desc):
# element = {
# 'text' : desc,
# 'label': label2id[index], # ensure labels starts from 0
# }
# output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../../../biomedical_data_import/bc2gm_train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df)),
})
return combined_data
# %%
#########################################
# training function
def train():
save_path = f'checkpoint'
split_datasets = create_dataset()
# prepare tokenizer
model_checkpoint = "distilbert/distilbert-base-uncased"
# model_checkpoint = 'google-bert/bert-base-cased'
# model_checkpoint = 'prajjwal1/bert-small'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
truncation=True, # enable truncation for efficiency
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text", # we only need the tokenization, not the original strings
)
# %%
# create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# %%
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
# create id2label and label2id
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=1e-3,
per_device_train_batch_size=512,
# per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=40,
warmup_steps=400,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
tokenizer=tokenizer,
data_collator=data_collator, # data_collator performs dynamic padding
compute_metrics=compute_metrics,
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
train()
# %%

View File

@ -0,0 +1,280 @@
# %%
from torch.utils.data import Dataset, DataLoader
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import random
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments,
TrainerCallback
)
import evaluate
import numpy as np
import pandas as pd
from functools import partial
import warnings
warnings.filterwarnings("ignore", message='Was asked to gather along dimension 0')
warnings.filterwarnings("ignore", message='FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated.')
# import matplotlib.pyplot as plt
torch.set_float32_matmul_precision('high')
def set_seed(seed):
"""
Set the random seed for reproducibility.
"""
random.seed(seed) # Python random module
np.random.seed(seed) # NumPy random
torch.manual_seed(seed) # PyTorch CPU
torch.cuda.manual_seed(seed) # PyTorch GPU
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
set_seed(42)
# %%
# PARAMETERS
SAMPLES=20
# %%
###################################################
# import code
# import training file
data_path = '../../../biomedical_data_import/bc2gm_train.csv'
df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
df["training_id"] = df["entity_id"].map(label2id)
###############################################################
# regeneration code
# %%
# we want to sample n samples from each class
# sample_size refers to the number of samples per class
def sample_from_df(df, sample_size_per_class=5):
sampled_df = (df.groupby( "training_id")[['training_id', 'mention']] # explicit give column names
.apply(lambda x: x.sample(n=min(sample_size_per_class, len(x))))
.reset_index(drop=True))
return sampled_df
# %%
# augment whole dataset
# for now, we just return the same df
def augment_data(df):
return df
# %%
class DynamicDataset(Dataset):
def __init__(self, df, sample_size_per_class, tokenizer):
"""
Args:
df (pd.DataFrame): Original DataFrame with class (id) and data columns.
sample_size_per_class (int): Number of samples to draw per class for each epoch.
"""
self.df = df
self.sample_size_per_class = sample_size_per_class
self.tokenizer = tokenizer
self.current_data = None
self.regenerate_data() # Generate the initial dataset
def regenerate_data(self):
"""
Generate a new sampled dataset for the current epoch.
dynamic callback function to regenerate data each time we call this
method, it updates the current_data we can:
- re-sample the dataframe for a new set of n_samples
- generate fresh augmentations this effectively
This allows us to re-sample and re-augment at the start of each epoch
"""
# Sample `sample_size_per_class` rows per class
sampled_df = sample_from_df(self.df, self.sample_size_per_class)
# perform future edits here
sampled_df = augment_data(sampled_df)
# perform tokenization here
# Batch tokenize the entire column of data
tokenized_batch = self.tokenizer(
sampled_df["mention"].to_list(), # Pass all text data at once
truncation=True,
# return_tensors="pt" # disabled because pt requires equal length tensors
)
# Store the tokenized data with labels
self.current_data = [
{
"input_ids": torch.tensor(tokenized_batch["input_ids"][i]),
"attention_mask": torch.tensor(tokenized_batch["attention_mask"][i]),
"labels": torch.tensor(sampled_df.iloc[i]["training_id"]) # Include the label
}
for i in range(len(sampled_df))
]
def __len__(self):
return len(self.current_data)
def __getitem__(self, idx):
return self.current_data[idx]
# %%
class RegenerateDatasetCallback(TrainerCallback):
def __init__(self, dataset, every_n_epochs=2):
"""
Args:
dataset: The dataset instance that supports regeneration.
every_n_epochs (int): Number of epochs to wait before regenerating the dataset.
"""
self.dataset = dataset
self.every_n_epochs = every_n_epochs
def on_epoch_begin(self, args, state, control, **kwargs):
# Check if the current epoch is a multiple of `every_n_epochs`
if (state.epoch + 1) % self.every_n_epochs == 0:
print(f"Epoch {int(state.epoch + 1)}: Regenerating dataset...")
self.dataset.regenerate_data()
# %%
def custom_collate_fn(batch):
# Dynamically pad tensors to the longest sequence in the batch
input_ids = [item["input_ids"] for item in batch]
attention_masks = [item["attention_mask"] for item in batch]
labels = torch.stack([item["labels"] for item in batch])
# Pad inputs to the same length
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=True)
attention_masks = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True)
return {
"input_ids": input_ids,
"attention_mask": attention_masks,
"labels": labels
}
##########################################################################
# training code
# %%
def train():
save_path = f'checkpoint'
# prepare tokenizer
model_checkpoint = "distilbert/distilbert-base-uncased"
# model_checkpoint = 'google-bert/bert-base-cased'
# model_checkpoint = 'prajjwal1/bert-small'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, clean_up_tokenization_spaces=True)
# make the dataset
# Define the callback
# lean_df = df.drop(columns=['entity_name'])
dynamic_dataset = DynamicDataset(df = df, sample_size_per_class=SAMPLES, tokenizer=tokenizer)
# create the regeneration callback
regeneration_callback = RegenerateDatasetCallback(dynamic_dataset, every_n_epochs=2)
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=1e-4,
per_device_train_batch_size=256,
# per_device_eval_batch_size=256,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=40,
warmup_steps=200,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=dynamic_dataset,
tokenizer=tokenizer,
data_collator=custom_collate_fn,
compute_metrics=compute_metrics,
callbacks=[regeneration_callback]
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
train()
# %%

View File

@ -0,0 +1,6 @@
*******************************************************************************
Accuracy: 0.15093
F1 Score: 0.14063
Precision: 0.15594
Recall: 0.15093

View File

@ -0,0 +1,246 @@
# %%
# from datasets import load_from_disk
import os
import glob
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import torch
from torch.utils.data import DataLoader
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
from tqdm import tqdm
torch.set_float32_matmul_precision('high')
BATCH_SIZE = 32
# %%
# construct the target id list
data_path = '../../../../biomedical_data_import/bc2gm_train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# target_id_list = [id for id in target_id_list]
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# Substitute digits with '#'
# text = re.sub(r'\d+', '#', text)
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
def is_int_string(s):
try:
int(s)
return True
except ValueError:
return False
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
row_id = row['entity_id']
if not is_int_string(row_id):
continue
row_id = int(row_id)
desc = row['mention']
desc = preprocess_text(desc)
element = {
'text' : desc,
'labels': label2id[row_id], # ensure labels starts from 0
}
output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../../../../biomedical_data_import/bc2gm_test.csv'
test_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'test': Dataset.from_list(process_df_to_dict(test_df)),
})
return combined_data
# %%
def test():
test_dataset = create_dataset()
# prepare tokenizer
checkpoint_directory = f'../checkpoint'
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# %%
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
truncation=True,
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
# print datasets['test'] columns
column_info = datasets['test'].features
for column, dtype in column_info.items():
print(f"Column: {column}, Type: {dtype}")
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
model = model.eval()
device = torch.device('cuda:3' if torch.cuda.is_available() else 'cpu')
model.to(device)
pred_labels = []
actual_labels = []
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
dataloader = DataLoader(
datasets['test'],
batch_size=BATCH_SIZE,
shuffle=False,
collate_fn=data_collator)
for batch in tqdm(dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
actual_labels.extend(batch['labels'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Perform inference
with torch.no_grad():
logits = model(
input_ids,
attention_mask).logits
predicted_class_ids = logits.argmax(dim=1).to("cpu")
pred_labels.extend(predicted_class_ids)
pred_labels = [tensor.item() for tensor in pred_labels]
# %%
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
y_true = actual_labels
y_pred = pred_labels
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
average_parameter = 'weighted'
zero_division_parameter = 0
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
with open("output.txt", "a") as f:
print('*' * 80, file=f)
# Print the results
print(f'Accuracy: {accuracy:.5f}', file=f)
print(f'F1 Score: {f1:.5f}', file=f)
print(f'Precision: {precision:.5f}', file=f)
print(f'Recall: {recall:.5f}', file=f)
# export result
label_list = [id2label[id] for id in pred_labels]
df = pd.DataFrame({
'class_prediction': pd.Series(label_list)
})
# we can save the t5 generation output here
df.to_csv(f"exports/result.csv", index=False)
# %%
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
test()

View File

@ -0,0 +1,368 @@
# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import random
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# %%
def set_seed(seed):
"""
Set the random seed for reproducibility.
"""
random.seed(seed) # Python random module
np.random.seed(seed) # NumPy random
torch.manual_seed(seed) # PyTorch CPU
torch.cuda.manual_seed(seed) # PyTorch GPU
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
set_seed(42)
SHUFFLES=0 # 0 shuffles means it does not re-sample
# %%
# We want to map the entity_id to a consecutive set of id's
# import training file
data_path = '../../biomedical_data_import/bc2gm_train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# %%
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# Substitute digits with 'x'
# text = re.sub(r'\d+', '#', text)
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
def generate_random_shuffles(text, n):
"""
Generate n strings with randomly shuffled words from the input text.
Args:
text (str): The input text.
n (int): The number of random variations to generate.
Returns:
list: A list of strings with shuffled words.
"""
words = text.split() # Split the input into words
shuffled_variations = []
for _ in range(n):
shuffled = words[:] # Copy the word list to avoid in-place modification
random.shuffle(shuffled) # Randomly shuffle the words
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
return shuffled_variations
# generate n more shuffled examples
def shuffle_text(text, n_shuffles=SHUFFLES):
"""
Preprocess a list of texts and add n random shuffles for each string.
Args:
texts (list): An input strings.
n_shuffles (int): Number of random shuffles to generate for each string.
Returns:
list: A list of preprocessed and shuffled strings.
"""
all_processed = []
# add the original text
all_processed.append(text)
# Generate random shuffles
shuffled_variations = generate_random_shuffles(text, n_shuffles)
all_processed.extend(shuffled_variations)
return all_processed
######################################
# augmentation by text corruption
def corrupt_word(word):
"""Corrupt a single word using random corruption techniques."""
if len(word) <= 1: # Skip corruption for single-character words
return word
corruption_type = random.choice(["delete", "swap"])
if corruption_type == "delete":
# Randomly delete a character
idx = random.randint(0, len(word) - 1)
word = word[:idx] + word[idx + 1:]
elif corruption_type == "swap":
# Swap two adjacent characters
if len(word) > 1:
idx = random.randint(0, len(word) - 2)
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
return word
def corrupt_string(sentence, corruption_probability=0.01):
"""Corrupt each word in the string with a given probability."""
words = sentence.split()
corrupted_words = [
corrupt_word(word) if random.random() < corruption_probability else word
for word in words
]
return " ".join(corrupted_words)
#############################################################
# Data Run code here
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
# produce shuffling
index = row['entity_id']
parent_desc = row['mention']
if isinstance(parent_desc, float):
print(parent_desc)
parent_desc = f'{parent_desc}'
parent_desc = preprocess_text(parent_desc)
# unaugmented data
element = {
'text' : parent_desc,
'label': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# # short sequences are rare, and we must compensate by including more examples
# # mutation of other longer sequences might drown out rare short sequences
# words = parent_desc.split()
# word_count = len(words)
# if word_count < 3:
# for _ in range(10):
# element = {
# 'text': parent_desc,
# 'label': label2id[index],
# }
# output_list.append(element)
# add shuffled strings
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
for desc in processed_descs:
if (desc != parent_desc):
element = {
'text' : desc,
'label': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# # corrupt string
# desc = corrupt_string(parent_desc, corruption_probability=0.1)
# if (desc != parent_desc):
# element = {
# 'text' : desc,
# 'label': label2id[index], # ensure labels starts from 0
# }
# output_list.append(element)
# # augmentation
# # remove all non-alphanumerics
# desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
# if (desc != parent_desc):
# element = {
# 'text' : desc,
# 'label': label2id[index], # ensure labels starts from 0
# }
# output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../../biomedical_data_import/bc2gm_train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df)),
})
return combined_data
# %%
#########################################
# training function
def train():
save_path = f'checkpoint'
split_datasets = create_dataset()
# prepare tokenizer
model_checkpoint = "distilbert/distilbert-base-uncased"
# model_checkpoint = 'google-bert/bert-base-cased'
# model_checkpoint = 'prajjwal1/bert-small'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# max_length = 120
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
truncation=True, # enable truncation for efficiency
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text", # we only need the tokenization, not the original strings
)
# %%
# create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# %%
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
# create id2label and label2id
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=1e-3,
per_device_train_batch_size=512,
# per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=40,
warmup_steps=400,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
tokenizer=tokenizer,
data_collator=data_collator, # data_collator performs dynamic padding
compute_metrics=compute_metrics,
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
train()
# %%

View File

@ -0,0 +1,236 @@
# %%
# from datasets import load_from_disk
import os
import glob
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import torch
from torch.utils.data import DataLoader
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
from tqdm import tqdm
torch.set_float32_matmul_precision('high')
BATCH_SIZE = 256
# %%
# construct the target id list
data_path = '../../../biomedical_data_import/bc5cdr-chemical_train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# target_id_list = [id for id in target_id_list]
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# Substitute digits with '#'
# text = re.sub(r'\d+', '#', text)
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
desc = row['mention']
desc = preprocess_text(desc)
row_id = row['entity_id']
element = {
'text' : desc,
'labels': label2id[row_id], # ensure labels starts from 0
}
output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../../../biomedical_data_import/bc5cdr-chemical_test.csv'
test_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'test': Dataset.from_list(process_df_to_dict(test_df)),
})
return combined_data
# %%
def test():
test_dataset = create_dataset()
# prepare tokenizer
checkpoint_directory = f'../checkpoint'
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# %%
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
truncation=True,
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
# print datasets['test'] columns
column_info = datasets['test'].features
for column, dtype in column_info.items():
print(f"Column: {column}, Type: {dtype}")
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
model = model.eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
pred_labels = []
actual_labels = []
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
dataloader = DataLoader(
datasets['test'],
batch_size=BATCH_SIZE,
shuffle=False,
collate_fn=data_collator)
for batch in tqdm(dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
actual_labels.extend(batch['labels'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Perform inference
with torch.no_grad():
logits = model(
input_ids,
attention_mask).logits
predicted_class_ids = logits.argmax(dim=1).to("cpu")
pred_labels.extend(predicted_class_ids)
pred_labels = [tensor.item() for tensor in pred_labels]
# %%
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
y_true = actual_labels
y_pred = pred_labels
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
average_parameter = 'weighted'
zero_division_parameter = 0
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
with open("output.txt", "a") as f:
print('*' * 80, file=f)
# Print the results
print(f'Accuracy: {accuracy:.5f}', file=f)
print(f'F1 Score: {f1:.5f}', file=f)
print(f'Precision: {precision:.5f}', file=f)
print(f'Recall: {recall:.5f}', file=f)
# export result
label_list = [id2label[id] for id in pred_labels]
df = pd.DataFrame({
'class_prediction': pd.Series(label_list)
})
# we can save the t5 generation output here
df.to_csv(f"exports/result.csv", index=False)
# %%
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
test()

View File

@ -0,0 +1,368 @@
# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import random
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# %%
def set_seed(seed):
"""
Set the random seed for reproducibility.
"""
random.seed(seed) # Python random module
np.random.seed(seed) # NumPy random
torch.manual_seed(seed) # PyTorch CPU
torch.cuda.manual_seed(seed) # PyTorch GPU
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
set_seed(42)
SHUFFLES=0 # 0 shuffles means it does not re-sample
# %%
# We want to map the entity_id to a consecutive set of id's
# import training file
data_path = '../../biomedical_data_import/bc5cdr-chemical_train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# %%
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# Substitute digits with 'x'
# text = re.sub(r'\d+', '#', text)
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
def generate_random_shuffles(text, n):
"""
Generate n strings with randomly shuffled words from the input text.
Args:
text (str): The input text.
n (int): The number of random variations to generate.
Returns:
list: A list of strings with shuffled words.
"""
words = text.split() # Split the input into words
shuffled_variations = []
for _ in range(n):
shuffled = words[:] # Copy the word list to avoid in-place modification
random.shuffle(shuffled) # Randomly shuffle the words
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
return shuffled_variations
# generate n more shuffled examples
def shuffle_text(text, n_shuffles=SHUFFLES):
"""
Preprocess a list of texts and add n random shuffles for each string.
Args:
texts (list): An input strings.
n_shuffles (int): Number of random shuffles to generate for each string.
Returns:
list: A list of preprocessed and shuffled strings.
"""
all_processed = []
# add the original text
all_processed.append(text)
# Generate random shuffles
shuffled_variations = generate_random_shuffles(text, n_shuffles)
all_processed.extend(shuffled_variations)
return all_processed
######################################
# augmentation by text corruption
def corrupt_word(word):
"""Corrupt a single word using random corruption techniques."""
if len(word) <= 1: # Skip corruption for single-character words
return word
corruption_type = random.choice(["delete", "swap"])
if corruption_type == "delete":
# Randomly delete a character
idx = random.randint(0, len(word) - 1)
word = word[:idx] + word[idx + 1:]
elif corruption_type == "swap":
# Swap two adjacent characters
if len(word) > 1:
idx = random.randint(0, len(word) - 2)
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
return word
def corrupt_string(sentence, corruption_probability=0.01):
"""Corrupt each word in the string with a given probability."""
words = sentence.split()
corrupted_words = [
corrupt_word(word) if random.random() < corruption_probability else word
for word in words
]
return " ".join(corrupted_words)
#############################################################
# Data Run code here
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
# produce shuffling
index = row['entity_id']
parent_desc = row['mention']
if isinstance(parent_desc, float):
print(parent_desc)
parent_desc = f'{parent_desc}'
parent_desc = preprocess_text(parent_desc)
# unaugmented data
element = {
'text' : parent_desc,
'labels': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# # short sequences are rare, and we must compensate by including more examples
# # mutation of other longer sequences might drown out rare short sequences
# words = parent_desc.split()
# word_count = len(words)
# if word_count < 3:
# for _ in range(10):
# element = {
# 'text': parent_desc,
# 'labels': label2id[index],
# }
# output_list.append(element)
# add shuffled strings
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
for desc in processed_descs:
if (desc != parent_desc):
element = {
'text' : desc,
'labels': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# # corrupt string
# desc = corrupt_string(parent_desc, corruption_probability=0.1)
# if (desc != parent_desc):
# element = {
# 'text' : desc,
# 'labels': label2id[index], # ensure labels starts from 0
# }
# output_list.append(element)
# # augmentation
# # remove all non-alphanumerics
# desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
# if (desc != parent_desc):
# element = {
# 'text' : desc,
# 'labels': label2id[index], # ensure labels starts from 0
# }
# output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../../biomedical_data_import/bc5cdr-chemical.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df)),
})
return combined_data
# %%
#########################################
# training function
def train():
save_path = f'checkpoint'
split_datasets = create_dataset()
# prepare tokenizer
model_checkpoint = "distilbert/distilbert-base-uncased"
# model_checkpoint = 'google-bert/bert-base-cased'
# model_checkpoint = 'prajjwal1/bert-small'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# max_length = 120
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
truncation=True, # enable truncation for efficiency
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text", # we only need the tokenization, not the original strings
)
# %%
# create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# %%
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
# create id2label and label2id
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=1e-3,
per_device_train_batch_size=512,
# per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=40,
warmup_steps=400,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
tokenizer=tokenizer,
data_collator=data_collator, # data_collator performs dynamic padding
compute_metrics=compute_metrics,
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
train()
# %%

View File

@ -0,0 +1,2 @@
checkpoint*
tensorboard-log

View File

@ -0,0 +1 @@
exports

View File

@ -0,0 +1,6 @@
*******************************************************************************
Accuracy: 0.04872
F1 Score: 0.04283
Precision: 0.04903
Recall: 0.04872

View File

@ -0,0 +1,234 @@
# %%
# from datasets import load_from_disk
import os
import glob
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import torch
from torch.utils.data import DataLoader
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
from tqdm import tqdm
torch.set_float32_matmul_precision('high')
BATCH_SIZE = 32
# %%
# construct the target id list
data_path = '../../../../biomedical_data_import/bc5cdr-chemical_train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# target_id_list = [id for id in target_id_list]
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# Substitute digits with '#'
# text = re.sub(r'\d+', '#', text)
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
desc = row['mention']
desc = preprocess_text(desc)
row_id = row['entity_id']
element = {
'text' : desc,
'labels': label2id[row_id], # ensure labels starts from 0
}
output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../../../../biomedical_data_import/bc5cdr-chemical_test.csv'
test_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'test': Dataset.from_list(process_df_to_dict(test_df)),
})
return combined_data
# %%
def test():
test_dataset = create_dataset()
# prepare tokenizer
checkpoint_directory = f'../checkpoint'
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# %%
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
truncation=True,
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
column_info = datasets['test'].features
for column, dtype in column_info.items():
print(f"Column: {column}, Type: {dtype}")
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
model = model.eval()
device = torch.device('cuda:3' if torch.cuda.is_available() else 'cpu')
model.to(device)
pred_labels = []
actual_labels = []
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
dataloader = DataLoader(
datasets['test'],
batch_size=BATCH_SIZE,
shuffle=False,
collate_fn=data_collator)
for batch in tqdm(dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
actual_labels.extend(batch['labels'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Perform inference
with torch.no_grad():
logits = model(
input_ids,
attention_mask).logits
predicted_class_ids = logits.argmax(dim=1).to("cpu")
pred_labels.extend(predicted_class_ids)
pred_labels = [tensor.item() for tensor in pred_labels]
# %%
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
y_true = actual_labels
y_pred = pred_labels
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
average_parameter = 'weighted'
zero_division_parameter = 0
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
with open("output.txt", "a") as f:
print('*' * 80, file=f)
# Print the results
print(f'Accuracy: {accuracy:.5f}', file=f)
print(f'F1 Score: {f1:.5f}', file=f)
print(f'Precision: {precision:.5f}', file=f)
print(f'Recall: {recall:.5f}', file=f)
# export result
label_list = [id2label[id] for id in pred_labels]
df = pd.DataFrame({
'class_prediction': pd.Series(label_list)
})
# we can save the t5 generation output here
df.to_csv(f"exports/result.csv", index=False)
# %%
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
test()

View File

@ -0,0 +1,367 @@
# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import random
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# %%
def set_seed(seed):
"""
Set the random seed for reproducibility.
"""
random.seed(seed) # Python random module
np.random.seed(seed) # NumPy random
torch.manual_seed(seed) # PyTorch CPU
torch.cuda.manual_seed(seed) # PyTorch GPU
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
set_seed(42)
SHUFFLES=0 # 0 shuffles means it does not re-sample
# %%
# We want to map the entity_id to a consecutive set of id's
# import training file
data_path = '../../../biomedical_data_import/bc5cdr-chemical_train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# %%
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# Substitute digits with 'x'
# text = re.sub(r'\d+', '#', text)
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
def generate_random_shuffles(text, n):
"""
Generate n strings with randomly shuffled words from the input text.
Args:
text (str): The input text.
n (int): The number of random variations to generate.
Returns:
list: A list of strings with shuffled words.
"""
words = text.split() # Split the input into words
shuffled_variations = []
for _ in range(n):
shuffled = words[:] # Copy the word list to avoid in-place modification
random.shuffle(shuffled) # Randomly shuffle the words
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
return shuffled_variations
# generate n more shuffled examples
def shuffle_text(text, n_shuffles=SHUFFLES):
"""
Preprocess a list of texts and add n random shuffles for each string.
Args:
texts (list): An input strings.
n_shuffles (int): Number of random shuffles to generate for each string.
Returns:
list: A list of preprocessed and shuffled strings.
"""
all_processed = []
# add the original text
all_processed.append(text)
# Generate random shuffles
shuffled_variations = generate_random_shuffles(text, n_shuffles)
all_processed.extend(shuffled_variations)
return all_processed
######################################
# augmentation by text corruption
def corrupt_word(word):
"""Corrupt a single word using random corruption techniques."""
if len(word) <= 1: # Skip corruption for single-character words
return word
corruption_type = random.choice(["delete", "swap"])
if corruption_type == "delete":
# Randomly delete a character
idx = random.randint(0, len(word) - 1)
word = word[:idx] + word[idx + 1:]
elif corruption_type == "swap":
# Swap two adjacent characters
if len(word) > 1:
idx = random.randint(0, len(word) - 2)
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
return word
def corrupt_string(sentence, corruption_probability=0.01):
"""Corrupt each word in the string with a given probability."""
words = sentence.split()
corrupted_words = [
corrupt_word(word) if random.random() < corruption_probability else word
for word in words
]
return " ".join(corrupted_words)
#############################################################
# Data Run code here
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
# produce shuffling
index = row['entity_id']
parent_desc = row['mention']
if isinstance(parent_desc, float):
print(parent_desc)
parent_desc = f'{parent_desc}'
parent_desc = preprocess_text(parent_desc)
# unaugmented data
element = {
'text' : parent_desc,
'labels': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# # short sequences are rare, and we must compensate by including more examples
# # mutation of other longer sequences might drown out rare short sequences
# words = parent_desc.split()
# word_count = len(words)
# if word_count < 3:
# for _ in range(10):
# element = {
# 'text': parent_desc,
# 'labels': label2id[index],
# }
# output_list.append(element)
# add shuffled strings
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
for desc in processed_descs:
if (desc != parent_desc):
element = {
'text' : desc,
'labels': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# # corrupt string
# desc = corrupt_string(parent_desc, corruption_probability=0.1)
# if (desc != parent_desc):
# element = {
# 'text' : desc,
# 'labels': label2id[index], # ensure labels starts from 0
# }
# output_list.append(element)
# # augmentation
# # remove all non-alphanumerics
# desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
# if (desc != parent_desc):
# element = {
# 'text' : desc,
# 'labels': label2id[index], # ensure labels starts from 0
# }
# output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../../../biomedical_data_import/bc5cdr-chemical_train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df)),
})
return combined_data
# %%
#########################################
# training function
def train():
save_path = f'checkpoint'
split_datasets = create_dataset()
# prepare tokenizer
model_checkpoint = "distilbert/distilbert-base-uncased"
# model_checkpoint = 'google-bert/bert-base-cased'
# model_checkpoint = 'prajjwal1/bert-small'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# max_length = 120
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
truncation=True, # enable truncation for efficiency
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text", # we only need the tokenization, not the original strings
)
# %%
# create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# %%
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
# create id2label and label2id
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=5e-5,
per_device_train_batch_size=64,
# per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=40,
warmup_steps=400,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
tokenizer=tokenizer,
data_collator=data_collator, # data_collator performs dynamic padding
compute_metrics=compute_metrics,
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
train()

View File

@ -0,0 +1,2 @@
checkpoint*
tensorboard-log

View File

@ -0,0 +1 @@
exports

View File

@ -0,0 +1 @@

View File

@ -0,0 +1,236 @@
# %%
# from datasets import load_from_disk
import os
import glob
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import torch
from torch.utils.data import DataLoader
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
from tqdm import tqdm
torch.set_float32_matmul_precision('high')
BATCH_SIZE = 256
# %%
# construct the target id list
data_path = '../../../biomedical_data_import/bc2gm_train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# target_id_list = [id for id in target_id_list]
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# Substitute digits with '#'
# text = re.sub(r'\d+', '#', text)
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
desc = row['mention']
desc = preprocess_text(desc)
row_id = row['entity_id']
element = {
'text' : desc,
'labels': label2id[row_id], # ensure labels starts from 0
}
output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../../../biomedical_data_import/bc2gm_test.csv'
test_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'test': Dataset.from_list(process_df_to_dict(test_df)),
})
return combined_data
# %%
def test():
test_dataset = create_dataset()
# prepare tokenizer
checkpoint_directory = f'../checkpoint'
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# %%
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
truncation=True,
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
# print datasets['test'] columns
column_info = datasets['test'].features
for column, dtype in column_info.items():
print(f"Column: {column}, Type: {dtype}")
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
model = model.eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
pred_labels = []
actual_labels = []
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
dataloader = DataLoader(
datasets['test'],
batch_size=BATCH_SIZE,
shuffle=False,
collate_fn=data_collator)
for batch in tqdm(dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
actual_labels.extend(batch['labels'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Perform inference
with torch.no_grad():
logits = model(
input_ids,
attention_mask).logits
predicted_class_ids = logits.argmax(dim=1).to("cpu")
pred_labels.extend(predicted_class_ids)
pred_labels = [tensor.item() for tensor in pred_labels]
# %%
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
y_true = actual_labels
y_pred = pred_labels
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
average_parameter = 'weighted'
zero_division_parameter = 0
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
with open("output.txt", "a") as f:
print('*' * 80, file=f)
# Print the results
print(f'Accuracy: {accuracy:.5f}', file=f)
print(f'F1 Score: {f1:.5f}', file=f)
print(f'Precision: {precision:.5f}', file=f)
print(f'Recall: {recall:.5f}', file=f)
# export result
label_list = [id2label[id] for id in pred_labels]
df = pd.DataFrame({
'class_prediction': pd.Series(label_list)
})
# we can save the t5 generation output here
df.to_csv(f"exports/result.csv", index=False)
# %%
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
test()

View File

@ -0,0 +1,368 @@
# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import random
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# %%
def set_seed(seed):
"""
Set the random seed for reproducibility.
"""
random.seed(seed) # Python random module
np.random.seed(seed) # NumPy random
torch.manual_seed(seed) # PyTorch CPU
torch.cuda.manual_seed(seed) # PyTorch GPU
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
set_seed(42)
SHUFFLES=0 # 0 shuffles means it does not re-sample
# %%
# We want to map the entity_id to a consecutive set of id's
# import training file
data_path = '../../biomedical_data_import/bc2gm_train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# %%
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# Substitute digits with 'x'
# text = re.sub(r'\d+', '#', text)
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
def generate_random_shuffles(text, n):
"""
Generate n strings with randomly shuffled words from the input text.
Args:
text (str): The input text.
n (int): The number of random variations to generate.
Returns:
list: A list of strings with shuffled words.
"""
words = text.split() # Split the input into words
shuffled_variations = []
for _ in range(n):
shuffled = words[:] # Copy the word list to avoid in-place modification
random.shuffle(shuffled) # Randomly shuffle the words
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
return shuffled_variations
# generate n more shuffled examples
def shuffle_text(text, n_shuffles=SHUFFLES):
"""
Preprocess a list of texts and add n random shuffles for each string.
Args:
texts (list): An input strings.
n_shuffles (int): Number of random shuffles to generate for each string.
Returns:
list: A list of preprocessed and shuffled strings.
"""
all_processed = []
# add the original text
all_processed.append(text)
# Generate random shuffles
shuffled_variations = generate_random_shuffles(text, n_shuffles)
all_processed.extend(shuffled_variations)
return all_processed
######################################
# augmentation by text corruption
def corrupt_word(word):
"""Corrupt a single word using random corruption techniques."""
if len(word) <= 1: # Skip corruption for single-character words
return word
corruption_type = random.choice(["delete", "swap"])
if corruption_type == "delete":
# Randomly delete a character
idx = random.randint(0, len(word) - 1)
word = word[:idx] + word[idx + 1:]
elif corruption_type == "swap":
# Swap two adjacent characters
if len(word) > 1:
idx = random.randint(0, len(word) - 2)
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
return word
def corrupt_string(sentence, corruption_probability=0.01):
"""Corrupt each word in the string with a given probability."""
words = sentence.split()
corrupted_words = [
corrupt_word(word) if random.random() < corruption_probability else word
for word in words
]
return " ".join(corrupted_words)
#############################################################
# Data Run code here
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
# produce shuffling
index = row['entity_id']
parent_desc = row['mention']
if isinstance(parent_desc, float):
print(parent_desc)
parent_desc = f'{parent_desc}'
parent_desc = preprocess_text(parent_desc)
# unaugmented data
element = {
'text' : parent_desc,
'label': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# # short sequences are rare, and we must compensate by including more examples
# # mutation of other longer sequences might drown out rare short sequences
# words = parent_desc.split()
# word_count = len(words)
# if word_count < 3:
# for _ in range(10):
# element = {
# 'text': parent_desc,
# 'label': label2id[index],
# }
# output_list.append(element)
# add shuffled strings
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
for desc in processed_descs:
if (desc != parent_desc):
element = {
'text' : desc,
'label': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# # corrupt string
# desc = corrupt_string(parent_desc, corruption_probability=0.1)
# if (desc != parent_desc):
# element = {
# 'text' : desc,
# 'label': label2id[index], # ensure labels starts from 0
# }
# output_list.append(element)
# # augmentation
# # remove all non-alphanumerics
# desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
# if (desc != parent_desc):
# element = {
# 'text' : desc,
# 'label': label2id[index], # ensure labels starts from 0
# }
# output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../../biomedical_data_import/bc2gm_train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df)),
})
return combined_data
# %%
#########################################
# training function
def train():
save_path = f'checkpoint'
split_datasets = create_dataset()
# prepare tokenizer
model_checkpoint = "distilbert/distilbert-base-uncased"
# model_checkpoint = 'google-bert/bert-base-cased'
# model_checkpoint = 'prajjwal1/bert-small'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# max_length = 120
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
truncation=True, # enable truncation for efficiency
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text", # we only need the tokenization, not the original strings
)
# %%
# create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# %%
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
# create id2label and label2id
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=1e-3,
per_device_train_batch_size=512,
# per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=40,
warmup_steps=400,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
tokenizer=tokenizer,
data_collator=data_collator, # data_collator performs dynamic padding
compute_metrics=compute_metrics,
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
train()
# %%

2
biomedical_train/ncbi/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
checkpoint*
tensorboard-log

View File

@ -0,0 +1 @@
exports

View File

@ -0,0 +1 @@

View File

@ -0,0 +1,236 @@
# %%
# from datasets import load_from_disk
import os
import glob
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import torch
from torch.utils.data import DataLoader
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
from tqdm import tqdm
torch.set_float32_matmul_precision('high')
BATCH_SIZE = 256
# %%
# construct the target id list
data_path = '../../../biomedical_data_import/bc2gm_train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# target_id_list = [id for id in target_id_list]
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# Substitute digits with '#'
# text = re.sub(r'\d+', '#', text)
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
desc = row['mention']
desc = preprocess_text(desc)
row_id = row['entity_id']
element = {
'text' : desc,
'labels': label2id[row_id], # ensure labels starts from 0
}
output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../../../biomedical_data_import/bc2gm_test.csv'
test_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'test': Dataset.from_list(process_df_to_dict(test_df)),
})
return combined_data
# %%
def test():
test_dataset = create_dataset()
# prepare tokenizer
checkpoint_directory = f'../checkpoint'
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# %%
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
truncation=True,
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
# print datasets['test'] columns
column_info = datasets['test'].features
for column, dtype in column_info.items():
print(f"Column: {column}, Type: {dtype}")
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
model = model.eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
pred_labels = []
actual_labels = []
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
dataloader = DataLoader(
datasets['test'],
batch_size=BATCH_SIZE,
shuffle=False,
collate_fn=data_collator)
for batch in tqdm(dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
actual_labels.extend(batch['labels'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Perform inference
with torch.no_grad():
logits = model(
input_ids,
attention_mask).logits
predicted_class_ids = logits.argmax(dim=1).to("cpu")
pred_labels.extend(predicted_class_ids)
pred_labels = [tensor.item() for tensor in pred_labels]
# %%
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
y_true = actual_labels
y_pred = pred_labels
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
average_parameter = 'weighted'
zero_division_parameter = 0
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
with open("output.txt", "a") as f:
print('*' * 80, file=f)
# Print the results
print(f'Accuracy: {accuracy:.5f}', file=f)
print(f'F1 Score: {f1:.5f}', file=f)
print(f'Precision: {precision:.5f}', file=f)
print(f'Recall: {recall:.5f}', file=f)
# export result
label_list = [id2label[id] for id in pred_labels]
df = pd.DataFrame({
'class_prediction': pd.Series(label_list)
})
# we can save the t5 generation output here
df.to_csv(f"exports/result.csv", index=False)
# %%
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
test()

View File

@ -0,0 +1,368 @@
# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import random
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# %%
def set_seed(seed):
"""
Set the random seed for reproducibility.
"""
random.seed(seed) # Python random module
np.random.seed(seed) # NumPy random
torch.manual_seed(seed) # PyTorch CPU
torch.cuda.manual_seed(seed) # PyTorch GPU
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
set_seed(42)
SHUFFLES=0 # 0 shuffles means it does not re-sample
# %%
# We want to map the entity_id to a consecutive set of id's
# import training file
data_path = '../../biomedical_data_import/bc2gm_train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# %%
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# Substitute digits with 'x'
# text = re.sub(r'\d+', '#', text)
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
def generate_random_shuffles(text, n):
"""
Generate n strings with randomly shuffled words from the input text.
Args:
text (str): The input text.
n (int): The number of random variations to generate.
Returns:
list: A list of strings with shuffled words.
"""
words = text.split() # Split the input into words
shuffled_variations = []
for _ in range(n):
shuffled = words[:] # Copy the word list to avoid in-place modification
random.shuffle(shuffled) # Randomly shuffle the words
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
return shuffled_variations
# generate n more shuffled examples
def shuffle_text(text, n_shuffles=SHUFFLES):
"""
Preprocess a list of texts and add n random shuffles for each string.
Args:
texts (list): An input strings.
n_shuffles (int): Number of random shuffles to generate for each string.
Returns:
list: A list of preprocessed and shuffled strings.
"""
all_processed = []
# add the original text
all_processed.append(text)
# Generate random shuffles
shuffled_variations = generate_random_shuffles(text, n_shuffles)
all_processed.extend(shuffled_variations)
return all_processed
######################################
# augmentation by text corruption
def corrupt_word(word):
"""Corrupt a single word using random corruption techniques."""
if len(word) <= 1: # Skip corruption for single-character words
return word
corruption_type = random.choice(["delete", "swap"])
if corruption_type == "delete":
# Randomly delete a character
idx = random.randint(0, len(word) - 1)
word = word[:idx] + word[idx + 1:]
elif corruption_type == "swap":
# Swap two adjacent characters
if len(word) > 1:
idx = random.randint(0, len(word) - 2)
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
return word
def corrupt_string(sentence, corruption_probability=0.01):
"""Corrupt each word in the string with a given probability."""
words = sentence.split()
corrupted_words = [
corrupt_word(word) if random.random() < corruption_probability else word
for word in words
]
return " ".join(corrupted_words)
#############################################################
# Data Run code here
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
# produce shuffling
index = row['entity_id']
parent_desc = row['mention']
if isinstance(parent_desc, float):
print(parent_desc)
parent_desc = f'{parent_desc}'
parent_desc = preprocess_text(parent_desc)
# unaugmented data
element = {
'text' : parent_desc,
'label': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# # short sequences are rare, and we must compensate by including more examples
# # mutation of other longer sequences might drown out rare short sequences
# words = parent_desc.split()
# word_count = len(words)
# if word_count < 3:
# for _ in range(10):
# element = {
# 'text': parent_desc,
# 'label': label2id[index],
# }
# output_list.append(element)
# add shuffled strings
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
for desc in processed_descs:
if (desc != parent_desc):
element = {
'text' : desc,
'label': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# # corrupt string
# desc = corrupt_string(parent_desc, corruption_probability=0.1)
# if (desc != parent_desc):
# element = {
# 'text' : desc,
# 'label': label2id[index], # ensure labels starts from 0
# }
# output_list.append(element)
# # augmentation
# # remove all non-alphanumerics
# desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
# if (desc != parent_desc):
# element = {
# 'text' : desc,
# 'label': label2id[index], # ensure labels starts from 0
# }
# output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../../biomedical_data_import/bc2gm_train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df)),
})
return combined_data
# %%
#########################################
# training function
def train():
save_path = f'checkpoint'
split_datasets = create_dataset()
# prepare tokenizer
model_checkpoint = "distilbert/distilbert-base-uncased"
# model_checkpoint = 'google-bert/bert-base-cased'
# model_checkpoint = 'prajjwal1/bert-small'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# max_length = 120
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
truncation=True, # enable truncation for efficiency
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text", # we only need the tokenization, not the original strings
)
# %%
# create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# %%
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
# create id2label and label2id
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=1e-3,
per_device_train_batch_size=512,
# per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=40,
warmup_steps=400,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
tokenizer=tokenizer,
data_collator=data_collator, # data_collator performs dynamic padding
compute_metrics=compute_metrics,
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
train()
# %%

View File

@ -0,0 +1,2 @@
checkpoint*
tensorboard-log

View File

@ -0,0 +1,388 @@
# %%
from torch.utils.data import Dataset, DataLoader
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import random
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments,
TrainerCallback
)
import evaluate
import numpy as np
import pandas as pd
import math
from functools import partial
import warnings
warnings.filterwarnings("ignore", message='Was asked to gather along dimension 0')
warnings.filterwarnings("ignore", message='FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated.')
# import matplotlib.pyplot as plt
torch.set_float32_matmul_precision('high')
def set_seed(seed):
"""
Set the random seed for reproducibility.
"""
random.seed(seed) # Python random module
np.random.seed(seed) # NumPy random
torch.manual_seed(seed) # PyTorch CPU
torch.cuda.manual_seed(seed) # PyTorch GPU
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
set_seed(42)
# %%
# PARAMETERS
SAMPLES=20
SHUFFLES=5
AMPLIFY_FACTOR=5
# %%
###################################################
# import code
# import training file
data_path = '../../esAppMod_data_import/train.csv'
df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
df["training_id"] = df["entity_id"].map(label2id)
# %%
##############################################################
# augmentation code
# basic preprocessing
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
def generate_random_shuffles(text, n):
words = text.split() # Split the input into words
shuffled_variations = []
for _ in range(n):
shuffled = words[:] # Copy the word list to avoid in-place modification
random.shuffle(shuffled) # Randomly shuffle the words
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
return shuffled_variations
def shuffle_text(text, n_shuffles=SHUFFLES):
all_processed = []
# add the original text
all_processed.append(text)
# Generate random shuffles
shuffled_variations = generate_random_shuffles(text, n_shuffles)
all_processed.extend(shuffled_variations)
return all_processed
def corrupt_word(word):
"""Corrupt a single word using random corruption techniques."""
if len(word) <= 1: # Skip corruption for single-character words
return word
corruption_type = random.choice(["delete", "swap"])
if corruption_type == "delete":
# Randomly delete a character
idx = random.randint(0, len(word) - 1)
word = word[:idx] + word[idx + 1:]
elif corruption_type == "swap":
# Swap two adjacent characters
if len(word) > 1:
idx = random.randint(0, len(word) - 2)
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
return word
def corrupt_string(sentence, corruption_probability=0.01):
"""Corrupt each word in the string with a given probability."""
words = sentence.split()
corrupted_words = [
corrupt_word(word) if random.random() < corruption_probability else word
for word in words
]
return " ".join(corrupted_words)
# %%
def create_example(index, mention):
return {'training_id': index, 'mention': mention}
# augment whole dataset
def augment_data(df):
output_list = []
for idx,row in df.iterrows():
index = row['training_id']
parent_desc = row['mention']
parent_desc = preprocess_text(parent_desc)
# add basic example
output_list.append(create_example(index, parent_desc))
# add shuffled strings
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
for desc in processed_descs:
if (desc != parent_desc):
output_list.append(create_example(index, desc))
# add corrupted strings
desc = corrupt_string(parent_desc, corruption_probability=0.1)
if (desc != parent_desc):
output_list.append(create_example(index, desc))
# add example with stripped non-alphanumerics
desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
if (desc != parent_desc):
output_list.append(create_example(index, desc))
# short sequence amplifier
# short sequences are rare, and we must compensate by including more examples
# also, short sequence don't usually get affected by shuffle
words = parent_desc.split()
word_count = len(words)
if word_count <= 2:
for _ in range(AMPLIFY_FACTOR):
output_list.append(create_example(index, desc))
new_df = pd.DataFrame(output_list)
return new_df
###############################################################
# regeneration code
# %%
# we want to sample n samples from each class
# sample_size refers to the number of samples per class
def sample_from_df(df, sample_size_per_class=5):
sampled_df = (df.groupby( "training_id")[['training_id', 'mention']] # explicit give column names
.apply(lambda x: x.sample(n=min(sample_size_per_class, len(x))))
.reset_index(drop=True))
return sampled_df
# %%
class DynamicDataset(Dataset):
def __init__(self, df, sample_size_per_class, tokenizer):
"""
Args:
df (pd.DataFrame): Original DataFrame with class (id) and data columns.
sample_size_per_class (int): Number of samples to draw per class for each epoch.
"""
self.df = df
self.sample_size_per_class = sample_size_per_class
self.tokenizer = tokenizer
self.current_data = None
self.regenerate_data() # Generate the initial dataset
def regenerate_data(self):
"""
Generate a new sampled dataset for the current epoch.
dynamic callback function to regenerate data each time we call this
method, it updates the current_data we can:
- re-sample the dataframe for a new set of n_samples
- generate fresh augmentations this effectively
This allows us to re-sample and re-augment at the start of each epoch
"""
# Sample `sample_size_per_class` rows per class
sampled_df = sample_from_df(self.df, self.sample_size_per_class)
# perform future edits here
sampled_df = augment_data(sampled_df)
# perform tokenization here
# Batch tokenize the entire column of data
tokenized_batch = self.tokenizer(
sampled_df["mention"].to_list(), # Pass all text data at once
truncation=True,
# return_tensors="pt" # disabled because pt requires equal length tensors
)
# Store the tokenized data with labels
self.current_data = [
{
"input_ids": torch.tensor(tokenized_batch["input_ids"][i]),
"attention_mask": torch.tensor(tokenized_batch["attention_mask"][i]),
"labels": torch.tensor(sampled_df.iloc[i]["training_id"]) # Include the label
}
for i in range(len(sampled_df))
]
def __len__(self):
return len(self.current_data)
def __getitem__(self, idx):
return self.current_data[idx]
# %%
class RegenerateDatasetCallback(TrainerCallback):
def __init__(self, dataset):
self.dataset = dataset
def on_epoch_begin(self, args, state, control, **kwargs):
print(f"Epoch {int(math.ceil(state.epoch + 1))}: Regenerating dataset")
self.dataset.regenerate_data()
# %%
def custom_collate_fn(batch):
# Dynamically pad tensors to the longest sequence in the batch
input_ids = [item["input_ids"] for item in batch]
attention_masks = [item["attention_mask"] for item in batch]
labels = torch.stack([item["labels"] for item in batch])
# Pad inputs to the same length
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=True)
attention_masks = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True)
return {
"input_ids": input_ids,
"attention_mask": attention_masks,
"labels": labels
}
##########################################################################
# training code
# %%
def train():
save_path = f'checkpoint'
# prepare tokenizer
model_checkpoint = "distilbert/distilbert-base-uncased"
# model_checkpoint = 'google-bert/bert-base-cased'
# model_checkpoint = 'prajjwal1/bert-small'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, clean_up_tokenization_spaces=True)
# make the dataset
# Define the callback
lean_df = df.drop(columns=['entity_name'])
dynamic_dataset = DynamicDataset(df = lean_df, sample_size_per_class=SAMPLES, tokenizer=tokenizer)
# create the regeneration callback
regeneration_callback = RegenerateDatasetCallback(dynamic_dataset)
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
save_strategy="steps",
save_steps=500,
load_best_model_at_end=False,
learning_rate=5e-5,
per_device_train_batch_size=64,
# per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=120,
warmup_steps=400,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=dynamic_dataset,
tokenizer=tokenizer,
data_collator=custom_collate_fn,
compute_metrics=compute_metrics,
callbacks=[regeneration_callback]
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
train()
# %%

View File

@ -0,0 +1 @@
exports

View File

@ -0,0 +1,6 @@
*******************************************************************************
Accuracy: 0.76958
F1 Score: 0.79382
Precision: 0.88705
Recall: 0.76958

View File

@ -0,0 +1,2 @@
checkpoint*
tensorboard-log

View File

@ -0,0 +1 @@
exports

View File

@ -0,0 +1,6 @@
*******************************************************************************
Accuracy: 0.80689
F1 Score: 0.82527
Precision: 0.89684
Recall: 0.80689

View File

@ -0,0 +1,264 @@
# %%
# from datasets import load_from_disk
import os
import glob
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import torch
from torch.utils.data import DataLoader
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
from tqdm import tqdm
torch.set_float32_matmul_precision('high')
BATCH_SIZE = 256
# %%
# construct the target id list
# data_path = '../../../esAppMod_data_import/train.csv'
data_path = '../../../esAppMod_data_import/train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# Substitute digits with '#'
# text = re.sub(r'\d+', '#', text)
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
desc = row['mention']
desc = preprocess_text(desc)
index = row['entity_id']
element = {
'text' : desc,
'label': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../../../esAppMod_data_import/test.csv'
test_df = pd.read_csv(data_path, skipinitialspace=True)
# combined_data = DatasetDict({
# 'train': Dataset.from_list(process_df_to_dict(train_df)),
# })
return Dataset.from_list(process_df_to_dict(test_df))
# %%
def test():
test_dataset = create_dataset()
# prepare tokenizer
checkpoint_directory = f'../checkpoint'
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
# additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
# tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
# %%
# compute max token length
max_length = 0
for sample in test_dataset['text']:
# Tokenize the sample and get the length
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
length = len(input_ids)
# Update max_length if this sample is longer
if length > max_length:
max_length = length
print(max_length)
# %%
max_length = 128
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
max_length=max_length,
# truncation=True,
padding='max_length'
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
# %% temp
# tokenized_datasets['train'].rename_columns()
# %%
# create data collator
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
# %%
# compute metrics
# metric = evaluate.load("accuracy")
#
#
# def compute_metrics(eval_preds):
# preds, labels = eval_preds
# preds = np.argmax(preds, axis=1)
# return metric.compute(predictions=preds, references=labels)
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
model = model.eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
pred_labels = []
actual_labels = []
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
for batch in tqdm(dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
actual_labels.extend(batch['label'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Perform inference
with torch.no_grad():
logits = model(
input_ids,
attention_mask).logits
predicted_class_ids = logits.argmax(dim=1).to("cpu")
pred_labels.extend(predicted_class_ids)
pred_labels = [tensor.item() for tensor in pred_labels]
# %%
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
y_true = actual_labels
y_pred = pred_labels
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
average_parameter = 'weighted'
zero_division_parameter = 0
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
with open("output.txt", "a") as f:
print('*' * 80, file=f)
# Print the results
print(f'Accuracy: {accuracy:.5f}', file=f)
print(f'F1 Score: {f1:.5f}', file=f)
print(f'Precision: {precision:.5f}', file=f)
print(f'Recall: {recall:.5f}', file=f)
# export result
label_list = [id2label[id] for id in pred_labels]
df = pd.DataFrame({
'class_prediction': pd.Series(label_list)
})
# we can save the t5 generation output here
df.to_csv(f"exports/result.csv", index=False)
# %%
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
test()

View File

@ -0,0 +1,558 @@
# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import random
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# %%
def set_seed(seed):
"""
Set the random seed for reproducibility.
"""
random.seed(seed) # Python random module
np.random.seed(seed) # NumPy random
torch.manual_seed(seed) # PyTorch CPU
torch.cuda.manual_seed(seed) # PyTorch GPU
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
set_seed(42)
SHUFFLES=5
# %%
# import training file
data_path = '../../esAppMod_data_import/train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# %%
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# Substitute digits with 'x'
# text = re.sub(r'\d+', '#', text)
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
def generate_random_shuffles(text, n):
"""
Generate n strings with randomly shuffled words from the input text.
Args:
text (str): The input text.
n (int): The number of random variations to generate.
Returns:
list: A list of strings with shuffled words.
"""
words = text.split() # Split the input into words
shuffled_variations = []
for _ in range(n):
shuffled = words[:] # Copy the word list to avoid in-place modification
random.shuffle(shuffled) # Randomly shuffle the words
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
return shuffled_variations
# generate n more shuffled examples
def shuffle_text(text, n_shuffles=SHUFFLES):
"""
Preprocess a list of texts and add n random shuffles for each string.
Args:
texts (list): An input strings.
n_shuffles (int): Number of random shuffles to generate for each string.
Returns:
list: A list of preprocessed and shuffled strings.
"""
all_processed = []
# add the original text
all_processed.append(text)
# Generate random shuffles
shuffled_variations = generate_random_shuffles(text, n_shuffles)
all_processed.extend(shuffled_variations)
return all_processed
acronym_mapping = {
'hpsa': 'hp server automation',
'tam': 'tivoli access manager',
'adf': 'application development facility',
'html': 'hypertext markup language',
'wff': 'microsoft web farm framework',
'jsp': 'javaserver pages',
'bw': 'business works',
'ssrs': 'sql server reporting services',
'cl': 'control language',
'vba': 'visual basic for applications',
'esapi': 'enterprise security api',
'gwt': 'google web toolkit',
'pki': 'perkin elmer informatics',
'rtd': 'oracle realtime decisions',
'jms': 'java message service',
'db': 'database',
'soa': 'service oriented architecture',
'xsl': 'extensible stylesheet language',
'com': 'compopent object model',
'ldap': 'lightweight directory access protocol',
'odm': 'ibm operational decision manager',
'soql': 'salesforce object query language',
'oms': 'order management system',
'cfml': 'coldfusion markup language',
'nas': 'netscape application server',
'sql': 'structured query language',
'bde': 'borland database engine',
'imap': 'internet message access protocol',
'uws': 'ultidev web server',
'birt': 'business intelligence and reporting tools',
'mdw': 'model driven workflow',
'tws': 'tivoli workload scheduler',
'jre': 'java runtime environment',
'wcs': 'websphere commerce suite',
'was': 'websphere application server',
'ssis': 'sql server integration services',
'xhtml': 'extensible hypertext markup language',
'soap': 'simple object access protocol',
'san': 'storage area network',
'elk': 'elastic stack',
'arr': 'application request routing',
'xlst': 'extensible stylesheet language transformations',
'sccm': 'microsoft endpoint configuration manager',
'ejb': 'enterprise java beans',
'css': 'cascading style sheets',
'hpoo': 'hp operations orchestration',
'xml': 'extensible markup language',
'esb': 'enterprise service bus',
'edi': 'electronic data interchange',
'imsva': 'interscan messaging security virtual appliance',
'wtx': 'ibm websphere transformation extender',
'cgi': 'common gateway interface',
'bal': 'ibm basic assembly language',
'issow': 'integrated safe system of work',
'dcl': 'data control language',
'jdom': 'java document object model',
'fim': 'microsoft forefront identity manager',
'npl': 'niakwa programming language',
'wf': 'windows workflow foundation',
'lm': 'etap license manager',
'wts': 'windows terminal server',
'asp': 'active server pages',
'jil': 'job information language',
'mvc': 'model view controller',
'rmi': 'remote method invocation',
'ad': 'active directory',
'owb': 'oracle warehouse builder',
'rest': 'representational state transfer',
'jdk': 'java development kit',
'ids': 'integrated data store',
'bms': 'batch management software',
'vsx': 'vmware solution exchange',
'ssas': 'sql server analysis services',
'atl': 'atlas transformation language',
'ice': 'infobright community edition',
'esql': 'extended structured query language',
'corba': 'common object request broker architecture',
'dpe': 'device provisioning engines',
'rac': 'oracle real application clusters',
'iemt': 'iis easy migration tool',
'mes': 'manufacturing execution system',
'odbc': 'open database connectivity',
'lms': 'lan management solution',
'wcf': 'windows communication foundation',
'nes': 'netscape enterprise server',
'jsf': 'javaserver faces',
'alm': 'application lifecycle management',
'hlasm': 'high level assembler',
'cmod': 'content manager ondemand'}
external_source = {
'vb.net': 'visual basic dot net',
'jes': 'job entry subsystem',
'svn': 'subversion',
'vcs': 'version control system',
'lims': 'laboratory information management system',
'ide': 'integrated development environment',
'sdk': 'software development kit',
'mq': 'message queue',
'ims': 'information management system',
'isa': 'internet security and acceleration',
'vs': 'visual studio',
'esr': 'extended support release',
'ff': 'firefox',
'vb': 'visual basic',
'rhel': 'red hat enterprise linux',
'iis': 'internet information server',
'api': 'application programming interface',
'se': 'standard edition',
'\.net': 'dot net',
'c#': 'c sharp'
}
# synonyms = {
# 'windows server': 'windows nt',
# 'windows 7': 'windows desktop',
# 'windows 8': 'windows desktop',
# 'windows 10': 'windows desktop'
# }
# add more information
acronym_mapping.update(external_source)
abbrev_to_term = {f'\b{key}\b': value for key, value in acronym_mapping.items()}
term_to_abbrev = {f'\b{value}\b': key for key, value in acronym_mapping.items()}
def replace_terms_with_abbreviations(text):
for input, replacement in term_to_abbrev.items():
text = re.sub(input, replacement, text)
return text
def replace_abbreviations_with_terms(text):
for input, replacement in abbrev_to_term.items():
text = re.sub(input, replacement, text)
return text
######################################
# augmentation by text corruption
def corrupt_word(word):
"""Corrupt a single word using random corruption techniques."""
if len(word) <= 1: # Skip corruption for single-character words
return word
corruption_type = random.choice(["delete", "swap"])
if corruption_type == "delete":
# Randomly delete a character
idx = random.randint(0, len(word) - 1)
word = word[:idx] + word[idx + 1:]
elif corruption_type == "swap":
# Swap two adjacent characters
if len(word) > 1:
idx = random.randint(0, len(word) - 2)
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
return word
def corrupt_string(sentence, corruption_probability=0.01):
"""Corrupt each word in the string with a given probability."""
words = sentence.split()
corrupted_words = [
corrupt_word(word) if random.random() < corruption_probability else word
for word in words
]
return " ".join(corrupted_words)
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
label_flag_list = []
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
# produce shuffling
index = row['entity_id']
parent_desc = row['mention']
parent_desc = preprocess_text(parent_desc)
# unaugmented data
element = {
'text' : parent_desc,
'labels': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# short sequences are rare, and we must compensate by including more examples
# mutation of other longer sequences might drown out rare short sequences
words = parent_desc.split()
word_count = len(words)
if word_count < 3:
for _ in range(10):
element = {
'text': parent_desc,
'label': label2id[index],
}
output_list.append(element)
# check if label is in label_flag_list
if index not in label_flag_list:
entity_name = row['entity_name']
# add the "entity_name" label as a mention
element = {
'text': entity_name,
'labels': label2id[index],
}
output_list.append(element)
# remove all non-alphanumerics
desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
if (desc != parent_desc):
element = {
'text' : desc,
'labels': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# add shufles of the original entity name
no_of_shuffles = SHUFFLES
processed_descs = shuffle_text(entity_name, n_shuffles=no_of_shuffles)
for desc in processed_descs:
if (desc != parent_desc):
element = {
'text' : desc,
'labels': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
label_flag_list.append(index)
# add shuffled strings
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
for desc in processed_descs:
if (desc != parent_desc):
element = {
'text' : desc,
'labels': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# corrupt string
desc = corrupt_string(parent_desc, corruption_probability=0.1)
if (desc != parent_desc):
element = {
'text' : desc,
'labels': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# augmentation
# remove all non-alphanumerics
desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
if (desc != parent_desc):
element = {
'text' : desc,
'labels': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# # augmentation
# # perform abbrev_to_term
# temp_desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
# desc = replace_terms_with_abbreviations(temp_desc)
# if (desc != temp_desc):
# element = {
# 'text' : desc,
# 'label': label2id[index], # ensure labels starts from 0
# }
# output_list.append(element)
# # augmentation
# # perform term to abbrev
# desc = replace_abbreviations_with_terms(parent_desc)
# if (desc != parent_desc):
# element = {
# 'text' : desc,
# 'label': label2id[index], # ensure labels starts from 0
# }
# output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../../esAppMod_data_import/train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df)),
})
return combined_data
# %%
def train():
save_path = f'checkpoint'
split_datasets = create_dataset()
# prepare tokenizer
model_checkpoint = "distilbert/distilbert-base-uncased"
# model_checkpoint = 'google-bert/bert-base-cased'
# model_checkpoint = 'prajjwal1/bert-small'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
truncation=True,
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
# %% temp
# tokenized_datasets['train'].rename_columns()
# %%
# create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# %%
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
# create id2label and label2id
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=5e-5,
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=40,
warmup_steps=400,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
train()
# %%

View File

@ -0,0 +1,2 @@
checkpoint*
tensorboard-log

View File

@ -0,0 +1 @@
exports

View File

@ -0,0 +1,2 @@
checkpoint*
tensorboard-log

View File

@ -0,0 +1 @@
exports

View File

@ -0,0 +1,2 @@
checkpoint*
tensorboard-log

View File

@ -0,0 +1 @@
exports

View File

@ -0,0 +1,6 @@
*******************************************************************************
Accuracy: 0.80689
F1 Score: 0.82527
Precision: 0.89684
Recall: 0.80689

View File

@ -0,0 +1,264 @@
# %%
# from datasets import load_from_disk
import os
import glob
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import torch
from torch.utils.data import DataLoader
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
from tqdm import tqdm
torch.set_float32_matmul_precision('high')
BATCH_SIZE = 256
# %%
# construct the target id list
# data_path = '../../../esAppMod_data_import/train.csv'
data_path = '../../../esAppMod_data_import/train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# Substitute digits with '#'
# text = re.sub(r'\d+', '#', text)
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
desc = row['mention']
desc = preprocess_text(desc)
index = row['entity_id']
element = {
'text' : desc,
'label': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../../../esAppMod_data_import/test.csv'
test_df = pd.read_csv(data_path, skipinitialspace=True)
# combined_data = DatasetDict({
# 'train': Dataset.from_list(process_df_to_dict(train_df)),
# })
return Dataset.from_list(process_df_to_dict(test_df))
# %%
def test():
test_dataset = create_dataset()
# prepare tokenizer
checkpoint_directory = f'../checkpoint'
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
# additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
# tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
# %%
# compute max token length
max_length = 0
for sample in test_dataset['text']:
# Tokenize the sample and get the length
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
length = len(input_ids)
# Update max_length if this sample is longer
if length > max_length:
max_length = length
print(max_length)
# %%
max_length = 128
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
max_length=max_length,
# truncation=True,
padding='max_length'
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
# %% temp
# tokenized_datasets['train'].rename_columns()
# %%
# create data collator
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
# %%
# compute metrics
# metric = evaluate.load("accuracy")
#
#
# def compute_metrics(eval_preds):
# preds, labels = eval_preds
# preds = np.argmax(preds, axis=1)
# return metric.compute(predictions=preds, references=labels)
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
model = model.eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
pred_labels = []
actual_labels = []
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
for batch in tqdm(dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
actual_labels.extend(batch['label'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Perform inference
with torch.no_grad():
logits = model(
input_ids,
attention_mask).logits
predicted_class_ids = logits.argmax(dim=1).to("cpu")
pred_labels.extend(predicted_class_ids)
pred_labels = [tensor.item() for tensor in pred_labels]
# %%
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
y_true = actual_labels
y_pred = pred_labels
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
average_parameter = 'weighted'
zero_division_parameter = 0
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
with open("output.txt", "a") as f:
print('*' * 80, file=f)
# Print the results
print(f'Accuracy: {accuracy:.5f}', file=f)
print(f'F1 Score: {f1:.5f}', file=f)
print(f'Precision: {precision:.5f}', file=f)
print(f'Recall: {recall:.5f}', file=f)
# export result
label_list = [id2label[id] for id in pred_labels]
df = pd.DataFrame({
'class_prediction': pd.Series(label_list)
})
# we can save the t5 generation output here
df.to_csv(f"exports/result.csv", index=False)
# %%
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
test()

View File

@ -45,7 +45,7 @@ def set_seed(seed):
set_seed(42) set_seed(42)
SHUFFLES=10 SHUFFLES=5
# %% # %%
@ -411,15 +411,15 @@ def process_df_to_dict(df):
# } # }
# output_list.append(element) # output_list.append(element)
# augmentation # # augmentation
# perform term to abbrev # # perform term to abbrev
desc = replace_abbreviations_with_terms(parent_desc) # desc = replace_abbreviations_with_terms(parent_desc)
if (desc != parent_desc): # if (desc != parent_desc):
element = { # element = {
'text' : desc, # 'text' : desc,
'label': label2id[index], # ensure labels starts from 0 # 'label': label2id[index], # ensure labels starts from 0
} # }
output_list.append(element) # output_list.append(element)
return output_list return output_list

2
esAppMod_train/simple/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
checkpoint*
tensorboard-log

View File

@ -0,0 +1,273 @@
# %%
from torch.utils.data import Dataset, DataLoader
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import random
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments,
TrainerCallback
)
import evaluate
import numpy as np
import pandas as pd
from functools import partial
import warnings
warnings.filterwarnings("ignore", message='Was asked to gather along dimension 0')
warnings.filterwarnings("ignore", message='FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated.')
# import matplotlib.pyplot as plt
torch.set_float32_matmul_precision('high')
def set_seed(seed):
"""
Set the random seed for reproducibility.
"""
random.seed(seed) # Python random module
np.random.seed(seed) # NumPy random
torch.manual_seed(seed) # PyTorch CPU
torch.cuda.manual_seed(seed) # PyTorch GPU
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
set_seed(42)
# %%
# PARAMETERS
SAMPLES=20
# %%
###################################################
# import code
# import training file
data_path = '../../esAppMod_data_import/train.csv'
df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
df["training_id"] = df["entity_id"].map(label2id)
###############################################################
# regeneration code
# %%
# we want to sample n samples from each class
# sample_size refers to the number of samples per class
def sample_from_df(df, sample_size_per_class=5):
sampled_df = (df.groupby( "training_id")[['training_id', 'mention']] # explicit give column names
.apply(lambda x: x.sample(n=min(sample_size_per_class, len(x))))
.reset_index(drop=True))
return sampled_df
# %%
# augment whole dataset
# for now, we just return the same df
def augment_data(df):
return df
# %%
class DynamicDataset(Dataset):
def __init__(self, df, sample_size_per_class, tokenizer):
"""
Args:
df (pd.DataFrame): Original DataFrame with class (id) and data columns.
sample_size_per_class (int): Number of samples to draw per class for each epoch.
"""
self.df = df
self.sample_size_per_class = sample_size_per_class
self.tokenizer = tokenizer
self.current_data = None
self.regenerate_data() # Generate the initial dataset
def regenerate_data(self):
"""
Generate a new sampled dataset for the current epoch.
dynamic callback function to regenerate data each time we call this
method, it updates the current_data we can:
- re-sample the dataframe for a new set of n_samples
- generate fresh augmentations this effectively
This allows us to re-sample and re-augment at the start of each epoch
"""
# Sample `sample_size_per_class` rows per class
sampled_df = sample_from_df(self.df, self.sample_size_per_class)
# perform future edits here
sampled_df = augment_data(sampled_df)
# perform tokenization here
# Batch tokenize the entire column of data
tokenized_batch = self.tokenizer(
sampled_df["mention"].to_list(), # Pass all text data at once
truncation=True,
# return_tensors="pt" # disabled because pt requires equal length tensors
)
# Store the tokenized data with labels
self.current_data = [
{
"input_ids": torch.tensor(tokenized_batch["input_ids"][i]),
"attention_mask": torch.tensor(tokenized_batch["attention_mask"][i]),
"labels": torch.tensor(sampled_df.iloc[i]["training_id"]) # Include the label
}
for i in range(len(sampled_df))
]
def __len__(self):
return len(self.current_data)
def __getitem__(self, idx):
return self.current_data[idx]
# %%
class RegenerateDatasetCallback(TrainerCallback):
def __init__(self, dataset):
self.dataset = dataset
def on_epoch_begin(self, args, state, control, **kwargs):
print(f"Epoch {state.epoch + 1}: Regenerating dataset")
self.dataset.regenerate_data()
# %%
def custom_collate_fn(batch):
# Dynamically pad tensors to the longest sequence in the batch
input_ids = [item["input_ids"] for item in batch]
attention_masks = [item["attention_mask"] for item in batch]
labels = torch.stack([item["labels"] for item in batch])
# Pad inputs to the same length
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=True)
attention_masks = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True)
return {
"input_ids": input_ids,
"attention_mask": attention_masks,
"labels": labels
}
##########################################################################
# training code
# %%
def train():
save_path = f'checkpoint'
# prepare tokenizer
model_checkpoint = "distilbert/distilbert-base-uncased"
# model_checkpoint = 'google-bert/bert-base-cased'
# model_checkpoint = 'prajjwal1/bert-small'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, clean_up_tokenization_spaces=True)
# make the dataset
# Define the callback
lean_df = df.drop(columns=['entity_name'])
dynamic_dataset = DynamicDataset(df = lean_df, sample_size_per_class=10, tokenizer=tokenizer)
# create the regeneration callback
regeneration_callback = RegenerateDatasetCallback(dynamic_dataset)
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=5e-5,
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=120,
warmup_steps=400,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=dynamic_dataset,
tokenizer=tokenizer,
data_collator=custom_collate_fn,
compute_metrics=compute_metrics,
callbacks=[regeneration_callback]
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
train()
# %%

View File

@ -0,0 +1 @@
exports

View File

@ -0,0 +1 @@

View File

@ -0,0 +1,264 @@
# %%
# from datasets import load_from_disk
import os
import glob
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import torch
from torch.utils.data import DataLoader
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
from tqdm import tqdm
torch.set_float32_matmul_precision('high')
BATCH_SIZE = 256
# %%
# construct the target id list
# data_path = '../../../esAppMod_data_import/train.csv'
data_path = '../../../esAppMod_data_import/train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# Substitute digits with '#'
# text = re.sub(r'\d+', '#', text)
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
desc = row['mention']
desc = preprocess_text(desc)
index = row['entity_id']
element = {
'text' : desc,
'label': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../../../esAppMod_data_import/test.csv'
test_df = pd.read_csv(data_path, skipinitialspace=True)
# combined_data = DatasetDict({
# 'train': Dataset.from_list(process_df_to_dict(train_df)),
# })
return Dataset.from_list(process_df_to_dict(test_df))
# %%
def test():
test_dataset = create_dataset()
# prepare tokenizer
checkpoint_directory = f'../checkpoint'
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
# additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
# tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
# %%
# compute max token length
max_length = 0
for sample in test_dataset['text']:
# Tokenize the sample and get the length
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
length = len(input_ids)
# Update max_length if this sample is longer
if length > max_length:
max_length = length
print(max_length)
# %%
max_length = 128
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
max_length=max_length,
# truncation=True,
padding='max_length'
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
# %% temp
# tokenized_datasets['train'].rename_columns()
# %%
# create data collator
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
# %%
# compute metrics
# metric = evaluate.load("accuracy")
#
#
# def compute_metrics(eval_preds):
# preds, labels = eval_preds
# preds = np.argmax(preds, axis=1)
# return metric.compute(predictions=preds, references=labels)
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
model = model.eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
pred_labels = []
actual_labels = []
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
for batch in tqdm(dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
actual_labels.extend(batch['label'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Perform inference
with torch.no_grad():
logits = model(
input_ids,
attention_mask).logits
predicted_class_ids = logits.argmax(dim=1).to("cpu")
pred_labels.extend(predicted_class_ids)
pred_labels = [tensor.item() for tensor in pred_labels]
# %%
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
y_true = actual_labels
y_pred = pred_labels
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
average_parameter = 'weighted'
zero_division_parameter = 0
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
with open("output.txt", "a") as f:
print('*' * 80, file=f)
# Print the results
print(f'Accuracy: {accuracy:.5f}', file=f)
print(f'F1 Score: {f1:.5f}', file=f)
print(f'Precision: {precision:.5f}', file=f)
print(f'Recall: {recall:.5f}', file=f)
# export result
label_list = [id2label[id] for id in pred_labels]
df = pd.DataFrame({
'class_prediction': pd.Series(label_list)
})
# we can save the t5 generation output here
df.to_csv(f"exports/result.csv", index=False)
# %%
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
test()

View File

@ -0,0 +1,232 @@
# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import random
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# %%
def set_seed(seed):
"""
Set the random seed for reproducibility.
"""
random.seed(seed) # Python random module
np.random.seed(seed) # NumPy random
torch.manual_seed(seed) # PyTorch CPU
torch.cuda.manual_seed(seed) # PyTorch GPU
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
set_seed(42)
SHUFFLES=5
# %%
# import training file
data_path = '../../esAppMod_data_import/train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# %%
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
# produce shuffling
index = row['entity_id']
parent_desc = row['mention']
parent_desc = preprocess_text(parent_desc)
# unaugmented data
element = {
'text' : parent_desc,
'labels': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../../esAppMod_data_import/train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df)),
})
return combined_data
# %%
def train():
save_path = f'checkpoint'
split_datasets = create_dataset()
# prepare tokenizer
model_checkpoint = "distilbert/distilbert-base-uncased"
# model_checkpoint = 'google-bert/bert-base-cased'
# model_checkpoint = 'prajjwal1/bert-small'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
truncation=True,
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
# %% temp
# tokenized_datasets['train'].rename_columns()
# %%
# create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# %%
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
# create id2label and label2id
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=5e-5,
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=40,
warmup_steps=400,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
train()
# %%

View File

@ -0,0 +1,188 @@
# why?
# the existing huggingface library does not allow for flexibility in changing
# the training data between epochs
# this code example illustrates the use of dataset regeneration to make changes
# to the training data between epochs
# %%
from torch.utils.data import Dataset, DataLoader
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import random
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments
)
import evaluate
import numpy as np
import pandas as pd
from functools import partial
# import matplotlib.pyplot as plt
torch.set_float32_matmul_precision('high')
def set_seed(seed):
"""
Set the random seed for reproducibility.
"""
random.seed(seed) # Python random module
np.random.seed(seed) # NumPy random
torch.manual_seed(seed) # PyTorch CPU
torch.cuda.manual_seed(seed) # PyTorch GPU
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
set_seed(42)
# %%
# PARAMETERS
SAMPLES=5
# %%
# import training file
data_path = '../../esAppMod_data_import/train.csv'
df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# %%
# we want to sample n samples from each class
# sample_size refers to the number of samples per class
def sample_from_df(df, sample_size_per_class=5):
sampled_df = (df.groupby( "entity_id")[['entity_id', 'mention']] # explicit give column names
.apply(lambda x: x.sample(n=min(sample_size_per_class, len(x))))
.reset_index(drop=True))
return sampled_df
# %%
# augment whole dataset
# for now, we just return the same df
def augment_data(df):
return df
# %%
class DynamicDataset(Dataset):
def __init__(self, df, sample_size_per_class, tokenizer):
"""
Args:
df (pd.DataFrame): Original DataFrame with class (id) and data columns.
sample_size_per_class (int): Number of samples to draw per class for each epoch.
"""
self.df = df
self.sample_size_per_class = sample_size_per_class
self.tokenizer = tokenizer
self.current_data = None
self.regenerate_data() # Generate the initial dataset
def regenerate_data(self):
"""
Generate a new sampled dataset for the current epoch.
dynamic callback function to regenerate data each time we call this
method, it updates the current_data we can:
- re-sample the dataframe for a new set of n_samples
- generate fresh augmentations this effectively
This allows us to re-sample and re-augment at the start of each epoch
"""
# Sample `sample_size_per_class` rows per class
sampled_df = sample_from_df(self.df, self.sample_size_per_class)
# perform future augmentations here
sampled_df = augment_data(sampled_df)
# perform tokenization here
# Batch tokenize the entire column of data
tokenized_batch = self.tokenizer(
sampled_df["mention"].to_list(), # Pass all text data at once
truncation=True,
# return_tensors="pt" # disabled because pt requires equal length tensors
)
# Store the tokenized data with labels
# we need to convert to torch tensors so that subsequent 'pad_sequence'
# and 'stack' operations can work
self.current_data = [
{
"input_ids": torch.tensor(tokenized_batch["input_ids"][i]),
"attention_mask": torch.tensor(tokenized_batch["attention_mask"][i]),
"labels": torch.tensor(sampled_df.iloc[i]["entity_id"]) # Include the label
}
for i in range(len(sampled_df))
]
def __len__(self):
return len(self.current_data)
def __getitem__(self, idx):
return self.current_data[idx]
# %%
# Dynamic dataset
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", clean_up_tokenization_spaces=False)
lean_df = df.drop(columns=['entity_name'])
dynamic_dataset = DynamicDataset(df = lean_df, sample_size_per_class=10, tokenizer=tokenizer)
# %%
# custom tokenization
# %%
# Example usage of dynamic dataset
sample = dynamic_dataset[0]
print(sample)
# %%
def custom_collate_fn(batch):
# Dynamically pad tensors to the longest sequence in the batch
input_ids = [item["input_ids"] for item in batch]
attention_masks = [item["attention_mask"] for item in batch]
labels = torch.stack([item["labels"] for item in batch])
# Pad inputs to the same length
input_ids = torch.nn.utils.rnn.pad_sequence(input_ids, batch_first=True)
attention_masks = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True)
return {
"input_ids": input_ids,
"attention_mask": attention_masks,
"labels": labels
}
dataloader = DataLoader(
dynamic_dataset,
batch_size=32,
collate_fn=custom_collate_fn
)
# %%