2025-01-13 19:05:13 +09:00
|
|
|
# %%
|
|
|
|
|
|
|
|
# from datasets import load_from_disk
|
|
|
|
import os
|
|
|
|
|
|
|
|
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
|
|
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
|
|
|
|
|
|
import re
|
|
|
|
import random
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from transformers import (
|
|
|
|
AutoTokenizer,
|
|
|
|
AutoModelForSequenceClassification,
|
|
|
|
DataCollatorWithPadding,
|
|
|
|
Trainer,
|
|
|
|
EarlyStoppingCallback,
|
|
|
|
TrainingArguments
|
|
|
|
)
|
|
|
|
import evaluate
|
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
# import matplotlib.pyplot as plt
|
|
|
|
from datasets import Dataset, DatasetDict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch.set_float32_matmul_precision('high')
|
|
|
|
|
|
|
|
# %%
|
|
|
|
def set_seed(seed):
|
|
|
|
"""
|
|
|
|
Set the random seed for reproducibility.
|
|
|
|
"""
|
|
|
|
random.seed(seed) # Python random module
|
|
|
|
np.random.seed(seed) # NumPy random
|
|
|
|
torch.manual_seed(seed) # PyTorch CPU
|
|
|
|
torch.cuda.manual_seed(seed) # PyTorch GPU
|
|
|
|
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
|
|
|
|
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
|
|
|
|
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
|
|
|
|
|
|
|
|
set_seed(42)
|
|
|
|
|
2025-01-14 17:34:17 +09:00
|
|
|
SHUFFLES=2
|
2025-01-13 19:05:13 +09:00
|
|
|
|
|
|
|
# %%
|
|
|
|
|
|
|
|
# import training file
|
2025-01-14 17:34:17 +09:00
|
|
|
data_path = '../../esAppMod_data_import/train.csv'
|
2025-01-13 19:05:13 +09:00
|
|
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
|
|
# rather than use pattern, we use the real thing and property
|
|
|
|
entity_ids = train_df['entity_id'].to_list()
|
|
|
|
target_id_list = sorted(list(set(entity_ids)))
|
|
|
|
|
2025-01-14 17:34:17 +09:00
|
|
|
def compute_normalized_class_weights(class_counts, max_resamples=SHUFFLES):
|
|
|
|
"""
|
|
|
|
Compute normalized class weights inversely proportional to class counts.
|
|
|
|
The weights are normalized so that they sum to 1.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
class_counts (array-like): An array or list where each element represents the count of samples for a class.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
numpy.ndarray: A normalized array of weights for each class.
|
|
|
|
"""
|
|
|
|
class_counts = np.array(class_counts)
|
|
|
|
total_samples = np.sum(class_counts)
|
|
|
|
class_weights = total_samples / class_counts
|
|
|
|
# so that highest weight is 1
|
|
|
|
normalized_weights = class_weights / np.max(class_weights)
|
|
|
|
# Scale weights such that the highest weight corresponds to `max_resamples`
|
|
|
|
resample_counts = normalized_weights * max_resamples
|
|
|
|
# Round resamples to nearest integer
|
|
|
|
resample_counts = np.round(resample_counts).astype(int)
|
|
|
|
return resample_counts
|
|
|
|
|
|
|
|
# %%
|
|
|
|
id_counts = train_df['entity_id'].value_counts()
|
|
|
|
id_weights = compute_normalized_class_weights(id_counts, max_resamples=SHUFFLES)
|
|
|
|
id_index = id_counts.index
|
|
|
|
label2weight = {}
|
|
|
|
for idx, label in enumerate(id_index):
|
|
|
|
label2weight[label] = id_weights[idx]
|
|
|
|
|
2025-01-13 19:05:13 +09:00
|
|
|
|
|
|
|
# %%
|
|
|
|
id2label = {}
|
|
|
|
label2id = {}
|
|
|
|
for idx, val in enumerate(target_id_list):
|
|
|
|
id2label[idx] = val
|
|
|
|
label2id[val] = idx
|
|
|
|
|
|
|
|
# %%
|
|
|
|
# introduce pre-processing functions
|
|
|
|
def preprocess_text(text):
|
|
|
|
|
|
|
|
# 1. Make all uppercase
|
2025-01-14 17:34:17 +09:00
|
|
|
text = text.lower()
|
2025-01-13 19:05:13 +09:00
|
|
|
|
2025-01-14 17:34:17 +09:00
|
|
|
# Remove any non alphanumeric character
|
|
|
|
# text = re.sub(r'[^\w\s]', ' ', text) # Retains only alphanumeric and spaces
|
|
|
|
# replace dashes
|
|
|
|
text = re.sub(r"[-;:]", " ", text)
|
|
|
|
|
|
|
|
# Add space between digit followed by a letter
|
|
|
|
text = re.sub(r"(\d)([A-Z])", r"\1 \2", text)
|
|
|
|
|
|
|
|
# Add space between letter followed by a digit
|
|
|
|
text = re.sub(r"([A-Z])(\d)", r"\1 \2", text)
|
|
|
|
|
|
|
|
|
|
|
|
# Substitute digits with 'x'
|
|
|
|
text = re.sub(r'\d+', 'x', text)
|
|
|
|
|
|
|
|
# standardize spacing
|
|
|
|
text = re.sub(r'\s+', ' ', text).strip()
|
2025-01-13 19:05:13 +09:00
|
|
|
|
|
|
|
return text
|
|
|
|
|
|
|
|
|
|
|
|
def generate_random_shuffles(text, n):
|
|
|
|
"""
|
|
|
|
Generate n strings with randomly shuffled words from the input text.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
text (str): The input text.
|
|
|
|
n (int): The number of random variations to generate.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
list: A list of strings with shuffled words.
|
|
|
|
"""
|
|
|
|
words = text.split() # Split the input into words
|
|
|
|
shuffled_variations = []
|
|
|
|
|
|
|
|
for _ in range(n):
|
|
|
|
shuffled = words[:] # Copy the word list to avoid in-place modification
|
|
|
|
random.shuffle(shuffled) # Randomly shuffle the words
|
|
|
|
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
|
|
|
|
|
|
|
|
return shuffled_variations
|
|
|
|
|
|
|
|
|
|
|
|
# generate n more shuffled examples
|
|
|
|
def shuffle_text(text, n_shuffles=SHUFFLES):
|
|
|
|
"""
|
|
|
|
Preprocess a list of texts and add n random shuffles for each string.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
texts (list): An input strings.
|
|
|
|
n_shuffles (int): Number of random shuffles to generate for each string.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
list: A list of preprocessed and shuffled strings.
|
|
|
|
"""
|
|
|
|
all_processed = []
|
|
|
|
all_processed.append(text)
|
|
|
|
|
|
|
|
# Generate random shuffles
|
|
|
|
shuffled_variations = generate_random_shuffles(text, n_shuffles)
|
|
|
|
all_processed.extend(shuffled_variations)
|
|
|
|
|
|
|
|
return all_processed
|
|
|
|
|
2025-01-14 17:34:17 +09:00
|
|
|
term_to_abbrev = {
|
|
|
|
r'job entry system': 'jes',
|
|
|
|
r'subversion': 'svn',
|
|
|
|
r'borland database engine': 'bde',
|
|
|
|
r'business intelligence and reporting tools': 'birt',
|
|
|
|
r'lan management solution': 'lms',
|
|
|
|
r'laboratory information management system': 'lims',
|
|
|
|
r'ibm database 2': 'db/2',
|
|
|
|
r'integrated development environment': 'ide',
|
|
|
|
r'software development kit': 'sdk',
|
|
|
|
r'hp operations orchestration': 'hpoo',
|
|
|
|
r'hp server automation': 'hpsa',
|
|
|
|
r'internet information server': 'iis',
|
|
|
|
r'release 2': 'r2',
|
|
|
|
r'red hat enterprise linux': 'rhel',
|
|
|
|
r'oracle enterprise linux': 'oel',
|
|
|
|
r'websphere application server': 'was',
|
|
|
|
r'application development facility': 'adf',
|
|
|
|
r'server analysis services': 'ssas'
|
|
|
|
}
|
|
|
|
|
|
|
|
abbrev_to_term = {rf'\b{value}\b': key for key, value in term_to_abbrev.items()}
|
|
|
|
|
|
|
|
def replace_terms_with_abbreviations(text):
|
|
|
|
for input, replacement in term_to_abbrev.items():
|
|
|
|
text = re.sub(input, replacement, text)
|
|
|
|
return text
|
|
|
|
|
|
|
|
def replace_abbreivations_with_terms(text):
|
|
|
|
for input, replacement in abbrev_to_term.items():
|
|
|
|
text = re.sub(input, replacement, text)
|
|
|
|
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2025-01-13 19:05:13 +09:00
|
|
|
|
|
|
|
# outputs a list of dictionaries
|
|
|
|
# processes dataframe into lists of dictionaries
|
|
|
|
# each element maps input to output
|
|
|
|
# input: tag_description
|
|
|
|
# output: class label
|
|
|
|
def process_df_to_dict(df):
|
|
|
|
output_list = []
|
|
|
|
for _, row in df.iterrows():
|
|
|
|
# produce shuffling
|
|
|
|
index = row['entity_id']
|
2025-01-14 17:34:17 +09:00
|
|
|
parent_desc = row['mention']
|
|
|
|
parent_desc = preprocess_text(parent_desc)
|
|
|
|
# ensure at least 1 shuffle
|
|
|
|
# no_of_shuffles = label2weight[index] + 1
|
|
|
|
no_of_shuffles = SHUFFLES
|
|
|
|
processed_descs = shuffle_text(parent_desc, n_shuffles=no_of_shuffles)
|
|
|
|
|
|
|
|
for desc in processed_descs:
|
|
|
|
element = {
|
|
|
|
'text' : desc,
|
|
|
|
'label': label2id[index], # ensure labels starts from 0
|
|
|
|
}
|
|
|
|
output_list.append(element)
|
|
|
|
|
|
|
|
|
|
|
|
# perform abbrev_to_term
|
|
|
|
desc = replace_terms_with_abbreviations(parent_desc)
|
|
|
|
no_of_shuffles = SHUFFLES
|
|
|
|
processed_descs = shuffle_text(desc, n_shuffles=no_of_shuffles)
|
|
|
|
|
|
|
|
for desc in processed_descs:
|
|
|
|
element = {
|
|
|
|
'text' : desc,
|
|
|
|
'label': label2id[index], # ensure labels starts from 0
|
|
|
|
}
|
|
|
|
output_list.append(element)
|
|
|
|
|
|
|
|
# perform term to abbrev
|
|
|
|
desc = replace_abbreivations_with_terms(parent_desc)
|
|
|
|
no_of_shuffles = SHUFFLES
|
|
|
|
processed_descs = shuffle_text(desc, n_shuffles=no_of_shuffles)
|
2025-01-13 19:05:13 +09:00
|
|
|
|
|
|
|
for desc in processed_descs:
|
|
|
|
element = {
|
|
|
|
'text' : desc,
|
|
|
|
'label': label2id[index], # ensure labels starts from 0
|
|
|
|
}
|
|
|
|
output_list.append(element)
|
|
|
|
|
2025-01-14 17:34:17 +09:00
|
|
|
|
2025-01-13 19:05:13 +09:00
|
|
|
return output_list
|
|
|
|
|
|
|
|
|
|
|
|
def create_dataset():
|
|
|
|
# train
|
2025-01-14 17:34:17 +09:00
|
|
|
data_path = '../../esAppMod_data_import/train.csv'
|
2025-01-13 19:05:13 +09:00
|
|
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
|
|
|
|
|
|
|
|
|
|
combined_data = DatasetDict({
|
|
|
|
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
|
|
|
})
|
|
|
|
return combined_data
|
|
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
|
|
|
|
def train():
|
|
|
|
|
|
|
|
save_path = f'checkpoint'
|
|
|
|
split_datasets = create_dataset()
|
|
|
|
|
|
|
|
# prepare tokenizer
|
|
|
|
|
2025-01-14 17:34:17 +09:00
|
|
|
model_checkpoint = "distilbert/distilbert-base-uncased"
|
|
|
|
# model_checkpoint = 'google-bert/bert-base-cased'
|
|
|
|
# model_checkpoint = 'prajjwal1/bert-small'
|
2025-01-13 19:05:13 +09:00
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
|
|
# Define additional special tokens
|
|
|
|
# additional_special_tokens = ["<DESC>"]
|
|
|
|
# Add the additional special tokens to the tokenizer
|
|
|
|
# tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
|
|
|
|
|
|
max_length = 120
|
|
|
|
|
|
|
|
# given a dataset entry, run it through the tokenizer
|
|
|
|
def preprocess_function(example):
|
|
|
|
input = example['text']
|
|
|
|
# text_target sets the corresponding label to inputs
|
|
|
|
# there is no need to create a separate 'labels'
|
|
|
|
model_inputs = tokenizer(
|
|
|
|
input,
|
|
|
|
max_length=max_length,
|
|
|
|
truncation=True,
|
|
|
|
padding=True
|
|
|
|
)
|
|
|
|
return model_inputs
|
|
|
|
|
|
|
|
# map maps function to each "row" in the dataset
|
|
|
|
# aka the data in the immediate nesting
|
|
|
|
tokenized_datasets = split_datasets.map(
|
|
|
|
preprocess_function,
|
|
|
|
batched=True,
|
|
|
|
num_proc=8,
|
|
|
|
remove_columns="text",
|
|
|
|
)
|
|
|
|
|
|
|
|
# %% temp
|
|
|
|
# tokenized_datasets['train'].rename_columns()
|
|
|
|
|
|
|
|
# %%
|
|
|
|
# create data collator
|
|
|
|
|
|
|
|
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
|
|
|
|
|
|
|
# %%
|
|
|
|
# compute metrics
|
|
|
|
metric = evaluate.load("accuracy")
|
|
|
|
|
|
|
|
|
|
|
|
def compute_metrics(eval_preds):
|
|
|
|
preds, labels = eval_preds
|
|
|
|
preds = np.argmax(preds, axis=1)
|
|
|
|
return metric.compute(predictions=preds, references=labels)
|
|
|
|
|
|
|
|
# %%
|
|
|
|
# create id2label and label2id
|
|
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(
|
|
|
|
model_checkpoint,
|
|
|
|
num_labels=len(target_id_list),
|
|
|
|
id2label=id2label,
|
|
|
|
label2id=label2id)
|
|
|
|
# important! after extending tokens vocab
|
|
|
|
model.resize_token_embeddings(len(tokenizer))
|
|
|
|
|
|
|
|
# model = torch.compile(model, backend="inductor", dynamic=True)
|
|
|
|
|
|
|
|
|
|
|
|
# %%
|
|
|
|
# Trainer
|
|
|
|
|
|
|
|
training_args = TrainingArguments(
|
|
|
|
output_dir=f"{save_path}",
|
|
|
|
# eval_strategy="epoch",
|
|
|
|
eval_strategy="no",
|
|
|
|
logging_dir="tensorboard-log",
|
|
|
|
logging_strategy="epoch",
|
|
|
|
# save_strategy="epoch",
|
|
|
|
load_best_model_at_end=False,
|
2025-01-14 17:34:17 +09:00
|
|
|
learning_rate=5e-5,
|
|
|
|
per_device_train_batch_size=64,
|
|
|
|
per_device_eval_batch_size=64,
|
2025-01-13 19:05:13 +09:00
|
|
|
auto_find_batch_size=False,
|
|
|
|
ddp_find_unused_parameters=False,
|
|
|
|
weight_decay=0.01,
|
|
|
|
save_total_limit=1,
|
2025-01-14 17:34:17 +09:00
|
|
|
num_train_epochs=80,
|
|
|
|
warmup_steps=400,
|
2025-01-13 19:05:13 +09:00
|
|
|
bf16=True,
|
|
|
|
push_to_hub=False,
|
|
|
|
remove_unused_columns=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
trainer = Trainer(
|
|
|
|
model,
|
|
|
|
training_args,
|
|
|
|
train_dataset=tokenized_datasets["train"],
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
data_collator=data_collator,
|
|
|
|
compute_metrics=compute_metrics,
|
|
|
|
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
|
|
|
)
|
|
|
|
|
|
|
|
# uncomment to load training from checkpoint
|
|
|
|
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
|
|
|
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
|
|
|
|
|
|
|
trainer.train()
|
|
|
|
|
|
|
|
# execute training
|
|
|
|
train()
|
|
|
|
|
|
|
|
|
|
|
|
# %%
|