domain_mapping/esAppMod_train/seq2seq_t5_simple/train.py

191 lines
5.8 KiB
Python
Raw Normal View History

# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import torch
from transformers import (
T5TokenizerFast,
AutoModelForSeq2SeqLM,
DataCollatorForSeq2Seq,
Seq2SeqTrainer,
EarlyStoppingCallback,
Seq2SeqTrainingArguments
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# %%
# outputs a list of dictionaries
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
desc = row['mention']
label = row['entity_seq']
element = {
'input' : desc,
'output': f'{label}'
}
output_list.append(element)
return output_list
def create_dataset():
# train
data_path = f"../../esAppMod_data_import/train_seq.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df)),
})
return combined_data
# function to perform training for a given fold
def train():
save_path = f'checkpoint'
split_datasets = create_dataset()
# prepare tokenizer
model_checkpoint = "t5-small"
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
# additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
# tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
max_length = 120
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['input']
target = example['output']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
text_target=target,
max_length=max_length,
truncation=True,
padding=True
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns=split_datasets["train"].column_names,
)
# https://github.com/huggingface/transformers/pull/28414
# model_checkpoint = "google/t5-efficient-tiny"
# device_map set to auto to force it to load contiguous weights
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
metric = evaluate.load("sacrebleu")
def compute_metrics(eval_preds):
preds, labels = eval_preds
# In case the model returns more than the prediction logits
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds,
skip_special_tokens=False)
# Replace -100s in the labels as we can't decode them
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels,
skip_special_tokens=False)
# Remove <PAD> tokens from decoded predictions and labels
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
# Some simple post-processing
# decoded_preds = [pred.strip() for pred in decoded_preds]
# decoded_labels = [[label.strip()] for label in decoded_labels]
# print(decoded_preds, decoded_labels)
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
return {"bleu": result["score"]}
# Generation Config
# from transformers import GenerationConfig
gen_config = model.generation_config
gen_config.max_length = 64
# compile
# model = torch.compile(model, backend="inductor", dynamic=True)
# Trainer
args = Seq2SeqTrainingArguments(
f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=1e-3,
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=80,
predict_with_generate=True,
bf16=True,
push_to_hub=False,
generation_config=gen_config,
remove_unused_columns=False,
)
trainer = Seq2SeqTrainer(
model,
args,
train_dataset=tokenized_datasets["train"],
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
train()