domain_mapping/esAppMod_train/golden_sample/train.py

563 lines
16 KiB
Python
Raw Normal View History

# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import random
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# %%
def set_seed(seed):
"""
Set the random seed for reproducibility.
"""
random.seed(seed) # Python random module
np.random.seed(seed) # NumPy random
torch.manual_seed(seed) # PyTorch CPU
torch.cuda.manual_seed(seed) # PyTorch GPU
torch.cuda.manual_seed_all(seed) # If using multiple GPUs
torch.backends.cudnn.deterministic = True # Ensure deterministic behavior
torch.backends.cudnn.benchmark = False # Disable optimization for reproducibility
set_seed(42)
SHUFFLES=5
# %%
# import training file
data_path = '../../esAppMod_data_import/train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# %%
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# Substitute digits with 'x'
# text = re.sub(r'\d+', '#', text)
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
def generate_random_shuffles(text, n):
"""
Generate n strings with randomly shuffled words from the input text.
Args:
text (str): The input text.
n (int): The number of random variations to generate.
Returns:
list: A list of strings with shuffled words.
"""
words = text.split() # Split the input into words
shuffled_variations = []
for _ in range(n):
shuffled = words[:] # Copy the word list to avoid in-place modification
random.shuffle(shuffled) # Randomly shuffle the words
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
return shuffled_variations
# generate n more shuffled examples
def shuffle_text(text, n_shuffles=SHUFFLES):
"""
Preprocess a list of texts and add n random shuffles for each string.
Args:
texts (list): An input strings.
n_shuffles (int): Number of random shuffles to generate for each string.
Returns:
list: A list of preprocessed and shuffled strings.
"""
all_processed = []
# add the original text
all_processed.append(text)
# Generate random shuffles
shuffled_variations = generate_random_shuffles(text, n_shuffles)
all_processed.extend(shuffled_variations)
return all_processed
acronym_mapping = {
'hpsa': 'hp server automation',
'tam': 'tivoli access manager',
'adf': 'application development facility',
'html': 'hypertext markup language',
'wff': 'microsoft web farm framework',
'jsp': 'javaserver pages',
'bw': 'business works',
'ssrs': 'sql server reporting services',
'cl': 'control language',
'vba': 'visual basic for applications',
'esapi': 'enterprise security api',
'gwt': 'google web toolkit',
'pki': 'perkin elmer informatics',
'rtd': 'oracle realtime decisions',
'jms': 'java message service',
'db': 'database',
'soa': 'service oriented architecture',
'xsl': 'extensible stylesheet language',
'com': 'compopent object model',
'ldap': 'lightweight directory access protocol',
'odm': 'ibm operational decision manager',
'soql': 'salesforce object query language',
'oms': 'order management system',
'cfml': 'coldfusion markup language',
'nas': 'netscape application server',
'sql': 'structured query language',
'bde': 'borland database engine',
'imap': 'internet message access protocol',
'uws': 'ultidev web server',
'birt': 'business intelligence and reporting tools',
'mdw': 'model driven workflow',
'tws': 'tivoli workload scheduler',
'jre': 'java runtime environment',
'wcs': 'websphere commerce suite',
'was': 'websphere application server',
'ssis': 'sql server integration services',
'xhtml': 'extensible hypertext markup language',
'soap': 'simple object access protocol',
'san': 'storage area network',
'elk': 'elastic stack',
'arr': 'application request routing',
'xlst': 'extensible stylesheet language transformations',
'sccm': 'microsoft endpoint configuration manager',
'ejb': 'enterprise java beans',
'css': 'cascading style sheets',
'hpoo': 'hp operations orchestration',
'xml': 'extensible markup language',
'esb': 'enterprise service bus',
'edi': 'electronic data interchange',
'imsva': 'interscan messaging security virtual appliance',
'wtx': 'ibm websphere transformation extender',
'cgi': 'common gateway interface',
'bal': 'ibm basic assembly language',
'issow': 'integrated safe system of work',
'dcl': 'data control language',
'jdom': 'java document object model',
'fim': 'microsoft forefront identity manager',
'npl': 'niakwa programming language',
'wf': 'windows workflow foundation',
'lm': 'etap license manager',
'wts': 'windows terminal server',
'asp': 'active server pages',
'jil': 'job information language',
'mvc': 'model view controller',
'rmi': 'remote method invocation',
'ad': 'active directory',
'owb': 'oracle warehouse builder',
'rest': 'representational state transfer',
'jdk': 'java development kit',
'ids': 'integrated data store',
'bms': 'batch management software',
'vsx': 'vmware solution exchange',
'ssas': 'sql server analysis services',
'atl': 'atlas transformation language',
'ice': 'infobright community edition',
'esql': 'extended structured query language',
'corba': 'common object request broker architecture',
'dpe': 'device provisioning engines',
'rac': 'oracle real application clusters',
'iemt': 'iis easy migration tool',
'mes': 'manufacturing execution system',
'odbc': 'open database connectivity',
'lms': 'lan management solution',
'wcf': 'windows communication foundation',
'nes': 'netscape enterprise server',
'jsf': 'javaserver faces',
'alm': 'application lifecycle management',
'hlasm': 'high level assembler',
'cmod': 'content manager ondemand'}
external_source = {
'vb.net': 'visual basic dot net',
'jes': 'job entry subsystem',
'svn': 'subversion',
'vcs': 'version control system',
'lims': 'laboratory information management system',
'ide': 'integrated development environment',
'sdk': 'software development kit',
'mq': 'message queue',
'ims': 'information management system',
'isa': 'internet security and acceleration',
'vs': 'visual studio',
'esr': 'extended support release',
'ff': 'firefox',
'vb': 'visual basic',
'rhel': 'red hat enterprise linux',
'iis': 'internet information server',
'api': 'application programming interface',
'se': 'standard edition',
'\.net': 'dot net',
'c#': 'c sharp'
}
# synonyms = {
# 'windows server': 'windows nt',
# 'windows 7': 'windows desktop',
# 'windows 8': 'windows desktop',
# 'windows 10': 'windows desktop'
# }
# add more information
acronym_mapping.update(external_source)
abbrev_to_term = {f'\b{key}\b': value for key, value in acronym_mapping.items()}
term_to_abbrev = {f'\b{value}\b': key for key, value in acronym_mapping.items()}
def replace_terms_with_abbreviations(text):
for input, replacement in term_to_abbrev.items():
text = re.sub(input, replacement, text)
return text
def replace_abbreviations_with_terms(text):
for input, replacement in abbrev_to_term.items():
text = re.sub(input, replacement, text)
return text
######################################
# augmentation by text corruption
def corrupt_word(word):
"""Corrupt a single word using random corruption techniques."""
if len(word) <= 1: # Skip corruption for single-character words
return word
corruption_type = random.choice(["delete", "swap"])
if corruption_type == "delete":
# Randomly delete a character
idx = random.randint(0, len(word) - 1)
word = word[:idx] + word[idx + 1:]
elif corruption_type == "swap":
# Swap two adjacent characters
if len(word) > 1:
idx = random.randint(0, len(word) - 2)
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
return word
def corrupt_string(sentence, corruption_probability=0.01):
"""Corrupt each word in the string with a given probability."""
words = sentence.split()
corrupted_words = [
corrupt_word(word) if random.random() < corruption_probability else word
for word in words
]
return " ".join(corrupted_words)
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
label_flag_list = []
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
# produce shuffling
index = row['entity_id']
parent_desc = row['mention']
parent_desc = preprocess_text(parent_desc)
# Split the string into words
words = parent_desc.split()
# Count the number of words
word_count = len(words)
# short sequences are rare, and we must compensate by including more examples
# mutation of other longer sequences might drown out rare short sequences
if word_count < 3:
for _ in range(10):
element = {
'text': parent_desc,
'label': label2id[index],
}
output_list.append(element)
# check if label is in label_flag_list
if index not in label_flag_list:
entity_name = row['entity_name']
# add the "entity_name" label as a mention
element = {
'text': entity_name,
'label': label2id[index],
}
output_list.append(element)
# remove all non-alphanumerics
desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
if (desc != parent_desc):
element = {
'text' : desc,
'label': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# add shufles of the original entity name
no_of_shuffles = SHUFFLES
processed_descs = shuffle_text(entity_name, n_shuffles=no_of_shuffles)
for desc in processed_descs:
if (desc != parent_desc):
element = {
'text' : desc,
'label': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
label_flag_list.append(index)
# add shuffled strings
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
for desc in processed_descs:
if (desc != parent_desc):
element = {
'text' : desc,
'label': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# corrupt string
desc = corrupt_string(parent_desc, corruption_probability=0.1)
if (desc != parent_desc):
element = {
'text' : desc,
'label': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# augmentation
# remove all non-alphanumerics
desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
if (desc != parent_desc):
element = {
'text' : desc,
'label': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
# # augmentation
# # perform abbrev_to_term
# temp_desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
# desc = replace_terms_with_abbreviations(temp_desc)
# if (desc != temp_desc):
# element = {
# 'text' : desc,
# 'label': label2id[index], # ensure labels starts from 0
# }
# output_list.append(element)
# # augmentation
# # perform term to abbrev
# desc = replace_abbreviations_with_terms(parent_desc)
# if (desc != parent_desc):
# element = {
# 'text' : desc,
# 'label': label2id[index], # ensure labels starts from 0
# }
# output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../../esAppMod_data_import/train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df)),
})
return combined_data
# %%
def train():
save_path = f'checkpoint'
split_datasets = create_dataset()
# prepare tokenizer
model_checkpoint = "distilbert/distilbert-base-uncased"
# model_checkpoint = 'google-bert/bert-base-cased'
# model_checkpoint = 'prajjwal1/bert-small'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
# additional_special_tokens = ["<DESC>"]
# Add the additional special tokens to the tokenizer
# tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
max_length = 120
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
max_length=max_length,
truncation=True,
padding=True
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
# %% temp
# tokenized_datasets['train'].rename_columns()
# %%
# create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# %%
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
# create id2label and label2id
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(target_id_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=5e-5,
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=40,
warmup_steps=400,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
train()
# %%