277 lines
9.1 KiB
Python
277 lines
9.1 KiB
Python
|
# %%
|
||
|
import torch
|
||
|
import json
|
||
|
import random
|
||
|
import numpy as np
|
||
|
from transformers import AutoTokenizer
|
||
|
from transformers import AutoModel
|
||
|
from loss import batch_all_triplet_loss, batch_hard_triplet_loss
|
||
|
from sklearn.neighbors import KNeighborsClassifier
|
||
|
from tqdm import tqdm
|
||
|
import pandas as pd
|
||
|
import re
|
||
|
from torch.utils.data import Dataset, DataLoader
|
||
|
import torch.optim as optim
|
||
|
|
||
|
|
||
|
# %%
|
||
|
SHUFFLES=0
|
||
|
AMPLIFY_FACTOR=0
|
||
|
LEARNING_RATE=1e-5
|
||
|
|
||
|
|
||
|
# %%
|
||
|
def generate_train_entity_sets(entity_id_mentions, entity_id_name, group_size, anchor=True):
|
||
|
# split entity mentions into groups
|
||
|
# anchor = False, don't add entity name to each group, simply treat it as a normal mention
|
||
|
entity_sets = []
|
||
|
if anchor:
|
||
|
for id, mentions in entity_id_mentions.items():
|
||
|
random.shuffle(mentions)
|
||
|
positives = [mentions[i:i + group_size] for i in range(0, len(mentions), group_size)]
|
||
|
anchor_positive = [([entity_id_name[id]]+p, id) for p in positives]
|
||
|
entity_sets.extend(anchor_positive)
|
||
|
else:
|
||
|
for id, mentions in entity_id_mentions.items():
|
||
|
group = list(set([entity_id_name[id]] + mentions))
|
||
|
random.shuffle(group)
|
||
|
positives = [(mentions[i:i + group_size], id) for i in range(0, len(mentions), group_size)]
|
||
|
entity_sets.extend(positives)
|
||
|
return entity_sets
|
||
|
|
||
|
def batchGenerator(data, batch_size):
|
||
|
for i in range(0, len(data), batch_size):
|
||
|
batch = data[i:i+batch_size]
|
||
|
x, y = [], []
|
||
|
for t in batch:
|
||
|
x.extend(t[0])
|
||
|
y.extend([t[1]]*len(t[0]))
|
||
|
yield x, y
|
||
|
|
||
|
|
||
|
with open('../esAppMod/tca_entities.json', 'r') as file:
|
||
|
entities = json.load(file)
|
||
|
all_entity_id_name = {entity['entity_id']: entity['entity_name'] for _, entity in entities['data'].items()}
|
||
|
|
||
|
with open('../esAppMod/train.json', 'r') as file:
|
||
|
train = json.load(file)
|
||
|
train_entity_id_mentions = {data['entity_id']: data['mentions'] for _, data in train['data'].items()}
|
||
|
train_entity_id_name = {data['entity_id']: all_entity_id_name[data['entity_id']] for _, data in train['data'].items()}
|
||
|
|
||
|
# %%
|
||
|
###############
|
||
|
# alternate data import strategy
|
||
|
###################################################
|
||
|
# import code
|
||
|
# import training file
|
||
|
data_path = '../esAppMod_data_import/train.csv'
|
||
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||
|
# rather than use pattern, we use the real thing and property
|
||
|
entity_ids = df['entity_id'].to_list()
|
||
|
target_id_list = sorted(list(set(entity_ids)))
|
||
|
|
||
|
id2label = {}
|
||
|
label2id = {}
|
||
|
for idx, val in enumerate(target_id_list):
|
||
|
id2label[idx] = val
|
||
|
label2id[val] = idx
|
||
|
|
||
|
df["training_id"] = df["entity_id"].map(label2id)
|
||
|
|
||
|
# %%
|
||
|
##############################################################
|
||
|
# augmentation code
|
||
|
|
||
|
# basic preprocessing
|
||
|
def preprocess_text(text):
|
||
|
# 1. Make all uppercase
|
||
|
text = text.lower()
|
||
|
|
||
|
# standardize spacing
|
||
|
text = re.sub(r'\s+', ' ', text).strip()
|
||
|
|
||
|
return text
|
||
|
|
||
|
|
||
|
def generate_random_shuffles(text, n):
|
||
|
words = text.split() # Split the input into words
|
||
|
shuffled_variations = []
|
||
|
|
||
|
for _ in range(n):
|
||
|
shuffled = words[:] # Copy the word list to avoid in-place modification
|
||
|
random.shuffle(shuffled) # Randomly shuffle the words
|
||
|
shuffled_variations.append(" ".join(shuffled)) # Join the words back into a string
|
||
|
|
||
|
return shuffled_variations
|
||
|
|
||
|
|
||
|
def shuffle_text(text, n_shuffles=SHUFFLES):
|
||
|
all_processed = []
|
||
|
# add the original text
|
||
|
all_processed.append(text)
|
||
|
|
||
|
# Generate random shuffles
|
||
|
shuffled_variations = generate_random_shuffles(text, n_shuffles)
|
||
|
all_processed.extend(shuffled_variations)
|
||
|
|
||
|
return all_processed
|
||
|
|
||
|
def corrupt_word(word):
|
||
|
"""Corrupt a single word using random corruption techniques."""
|
||
|
if len(word) <= 1: # Skip corruption for single-character words
|
||
|
return word
|
||
|
|
||
|
corruption_type = random.choice(["delete", "swap"])
|
||
|
|
||
|
if corruption_type == "delete":
|
||
|
# Randomly delete a character
|
||
|
idx = random.randint(0, len(word) - 1)
|
||
|
word = word[:idx] + word[idx + 1:]
|
||
|
|
||
|
elif corruption_type == "swap":
|
||
|
# Swap two adjacent characters
|
||
|
if len(word) > 1:
|
||
|
idx = random.randint(0, len(word) - 2)
|
||
|
word = (word[:idx] + word[idx + 1] + word[idx] + word[idx + 2:])
|
||
|
|
||
|
|
||
|
return word
|
||
|
|
||
|
def corrupt_string(sentence, corruption_probability=0.01):
|
||
|
"""Corrupt each word in the string with a given probability."""
|
||
|
words = sentence.split()
|
||
|
corrupted_words = [
|
||
|
corrupt_word(word) if random.random() < corruption_probability else word
|
||
|
for word in words
|
||
|
]
|
||
|
return " ".join(corrupted_words)
|
||
|
|
||
|
|
||
|
def create_example(index, mention, entity_name):
|
||
|
return {'entity_id': index, 'mention': mention, 'entity_name': entity_name}
|
||
|
|
||
|
# augment whole dataset
|
||
|
def augment_data(df):
|
||
|
output_list = []
|
||
|
|
||
|
for idx,row in df.iterrows():
|
||
|
index = row['entity_id']
|
||
|
entity_name = row['entity_name']
|
||
|
parent_desc = row['mention']
|
||
|
parent_desc = preprocess_text(parent_desc)
|
||
|
|
||
|
# add basic example
|
||
|
output_list.append(create_example(index, parent_desc, entity_name))
|
||
|
|
||
|
# add shuffled strings
|
||
|
processed_descs = shuffle_text(parent_desc, n_shuffles=SHUFFLES)
|
||
|
for desc in processed_descs:
|
||
|
if (desc != parent_desc):
|
||
|
output_list.append(create_example(index, desc, entity_name))
|
||
|
|
||
|
# add corrupted strings
|
||
|
desc = corrupt_string(parent_desc, corruption_probability=0.01)
|
||
|
if (desc != parent_desc):
|
||
|
output_list.append(create_example(index, desc, entity_name))
|
||
|
|
||
|
# add example with stripped non-alphanumerics
|
||
|
desc = re.sub(r'[^\w\s]', ' ', parent_desc) # Retains only alphanumeric and spaces
|
||
|
if (desc != parent_desc):
|
||
|
output_list.append(create_example(index, desc, entity_name))
|
||
|
|
||
|
# short sequence amplifier
|
||
|
# short sequences are rare, and we must compensate by including more examples
|
||
|
# also, short sequence don't usually get affected by shuffle
|
||
|
words = parent_desc.split()
|
||
|
word_count = len(words)
|
||
|
if word_count <= 2:
|
||
|
for _ in range(AMPLIFY_FACTOR):
|
||
|
output_list.append(create_example(index, desc, entity_name))
|
||
|
|
||
|
new_df = pd.DataFrame(output_list)
|
||
|
return new_df
|
||
|
|
||
|
|
||
|
|
||
|
# %%
|
||
|
def make_entity_id_mentions(df):
|
||
|
entity_id_mentions = {}
|
||
|
entity_id_list = list(set(df['entity_id']))
|
||
|
for entity_id in entity_id_list:
|
||
|
entity_id_mentions[entity_id] = df[df['entity_id']==entity_id]['mention'].to_list()
|
||
|
return entity_id_mentions
|
||
|
|
||
|
def make_entity_id_name(df):
|
||
|
entity_id_name = {}
|
||
|
entity_id_list = list(set(df['entity_id']))
|
||
|
for entity_id in entity_id_list:
|
||
|
# entity_id always matches entity_name, so first value would work
|
||
|
entity_id_name[entity_id] = df[df['entity_id']==entity_id]['entity_name'].to_list()[0]
|
||
|
return entity_id_name
|
||
|
|
||
|
|
||
|
# %%
|
||
|
num_sample_per_class = 10 # samples in each group
|
||
|
batch_size = 16 # number of groups, effective batch_size for computing triplet loss = batch_size * num_sample_per_class
|
||
|
margin = 2
|
||
|
epochs = 200
|
||
|
DEVICE = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
||
|
# MODEL_NAME = 'distilbert-base-cased' #'prajjwal1/bert-small' #'bert-base-cased'
|
||
|
MODEL_NAME = 'prajjwal1/bert-small' # 'prajjwal1/bert-small' 'bert-base-cased' 'distilbert-base-cased'
|
||
|
|
||
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
||
|
model = AutoModel.from_pretrained(MODEL_NAME)
|
||
|
optimizer = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE)
|
||
|
# scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
|
||
|
|
||
|
model.to(DEVICE)
|
||
|
model.train()
|
||
|
|
||
|
losses = []
|
||
|
|
||
|
|
||
|
|
||
|
for epoch in tqdm(range(epochs)):
|
||
|
total_loss = 0.0
|
||
|
batch_number = 0
|
||
|
|
||
|
augmented_df = augment_data(df)
|
||
|
train_entity_id_mentions = make_entity_id_mentions(augmented_df)
|
||
|
train_entity_id_name = make_entity_id_name(augmented_df)
|
||
|
|
||
|
data = generate_train_entity_sets(train_entity_id_mentions, train_entity_id_name, num_sample_per_class-1, anchor=True)
|
||
|
random.shuffle(data)
|
||
|
for x,y in batchGenerator(data, batch_size):
|
||
|
|
||
|
# print(len(x), len(y), end='-->')
|
||
|
optimizer.zero_grad()
|
||
|
|
||
|
inputs = tokenizer(x, padding=True, return_tensors='pt')
|
||
|
inputs.to(DEVICE)
|
||
|
outputs = model(**inputs)
|
||
|
cls = outputs.last_hidden_state[:,0,:]
|
||
|
# for training less than half the time, train on easy
|
||
|
y = torch.tensor(y).to(DEVICE)
|
||
|
if epoch < epochs / 2:
|
||
|
loss, _ = batch_all_triplet_loss(y, cls, margin, squared=False)
|
||
|
# for training after half the time, train on hard
|
||
|
else:
|
||
|
loss = batch_hard_triplet_loss(y, cls, margin, squared=False)
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
total_loss += loss.detach().item()
|
||
|
batch_number += 1
|
||
|
|
||
|
del x, y, outputs, cls, loss
|
||
|
torch.cuda.empty_cache()
|
||
|
|
||
|
# scheduler.step() # Update the learning rate
|
||
|
print(f'epoch loss: {total_loss/batch_number}')
|
||
|
# print(f"Epoch {epoch+1}: lr={scheduler.get_last_lr()[0]}")
|
||
|
if epoch % 5 == 0:
|
||
|
torch.save(model.state_dict(), './checkpoint/siamese_simple.pt')
|
||
|
|
||
|
|
||
|
torch.save(model.state_dict(), './checkpoint/siamese_simple.pt')
|
||
|
# %%
|