domain_mapping/cosines_with_augmentations/classify.py

257 lines
7.3 KiB
Python
Raw Normal View History

# %%
# from datasets import load_from_disk
import os
import glob
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import re
import torch
from torch.utils.data import DataLoader
import torch
import torch.nn as nn
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
AutoModel,
DataCollatorWithPadding,
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
from tqdm import tqdm
torch.set_float32_matmul_precision('high')
BATCH_SIZE = 256
# %%
# construct the target id list
# data_path = '../../../esAppMod_data_import/train.csv'
data_path = '../esAppMod_data_import/train.csv'
train_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
entity_ids = train_df['entity_id'].to_list()
target_id_list = sorted(list(set(entity_ids)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(target_id_list):
id2label[idx] = val
label2id[val] = idx
# introduce pre-processing functions
def preprocess_text(text):
# 1. Make all uppercase
text = text.lower()
# Substitute digits with '#'
# text = re.sub(r'\d+', '#', text)
# standardize spacing
text = re.sub(r'\s+', ' ', text).strip()
return text
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
desc = row['mention']
desc = preprocess_text(desc)
index = row['entity_id']
element = {
'text' : desc,
'label': label2id[index], # ensure labels starts from 0
}
output_list.append(element)
return output_list
def create_dataset():
# train
data_path = '../esAppMod_data_import/test.csv'
test_df = pd.read_csv(data_path, skipinitialspace=True)
# combined_data = DatasetDict({
# 'train': Dataset.from_list(process_df_to_dict(train_df)),
# })
return Dataset.from_list(process_df_to_dict(test_df))
# %%
def test():
test_dataset = create_dataset()
# prepare tokenizer
MODEL_NAME = 'prajjwal1/bert-small' # 'prajjwal1/bert-small' 'bert-base-cased' 'distilbert-base-cased'
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
# additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
# tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
# %%
# compute max token length
max_length = 0
for sample in test_dataset['text']:
# Tokenize the sample and get the length
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
length = len(input_ids)
# Update max_length if this sample is longer
if length > max_length:
max_length = length
print(max_length)
# %%
max_length = 128
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
# max_length=max_length,
# padding='max_length'
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
bert_model = AutoModel.from_pretrained(MODEL_NAME)
class BertForClassificationAndTriplet(nn.Module):
def __init__(self, bert_model, num_classes):
super().__init__()
self.bert = bert_model
self.classifier = nn.Linear(bert_model.config.hidden_size, num_classes)
def forward(self, input_ids, attention_mask=None):
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
cls_embeddings = outputs.last_hidden_state[:, 0, :] # CLS token
logits = self.classifier(cls_embeddings)
return cls_embeddings, logits
model = BertForClassificationAndTriplet(bert_model, num_classes=len(label2id))
state_dict = torch.load('./checkpoint/classification.pt')
model.load_state_dict(state_dict)
model = model.eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
pred_labels = []
actual_labels = []
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False, collate_fn=data_collator)
for batch in tqdm(dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
actual_labels.extend(batch['labels'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Perform inference
with torch.no_grad():
cls, logits = model(
input_ids,
attention_mask)
predicted_class_ids = logits.argmax(dim=1).to("cpu")
pred_labels.extend(predicted_class_ids)
pred_labels = [tensor.item() for tensor in pred_labels]
# %%
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
y_true = actual_labels
y_pred = pred_labels
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
average_parameter = 'weighted'
zero_division_parameter = 0
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
with open("results/output.txt", "a") as f:
print('*' * 80, file=f)
# Print the results
print(f'Accuracy: {accuracy:.5f}', file=f)
print(f'F1 Score: {f1:.5f}', file=f)
print(f'Precision: {precision:.5f}', file=f)
print(f'Recall: {recall:.5f}', file=f)
# export result
label_list = [id2label[id] for id in pred_labels]
df = pd.DataFrame({
'class_prediction': pd.Series(label_list)
})
# we can save the t5 generation output here
df.to_csv(f"results/classify.csv", index=False)
# %%
# reset file before writing to it
with open("results/output.txt", "w") as f:
print('', file=f)
test()