125 lines
4.0 KiB
Python
125 lines
4.0 KiB
Python
|
# %%
|
||
|
import json
|
||
|
import pandas as pd
|
||
|
|
||
|
##########################################
|
||
|
# %%
|
||
|
# import training file
|
||
|
data_path = '../esAppMod_data_import/train.csv'
|
||
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||
|
|
||
|
# %%
|
||
|
# import entity file
|
||
|
# Keep only one row per unique value in 'column1'
|
||
|
unique_df = train_df.drop_duplicates(subset="entity_name", keep="first")
|
||
|
id2label = {}
|
||
|
for _, row in unique_df.iterrows():
|
||
|
id2label[row['entity_id']] = row['entity_name']
|
||
|
|
||
|
inverse_dict = {value:key for key,value in id2label.items()}
|
||
|
# %%
|
||
|
# Create a new dictionary with sorted keys
|
||
|
# sorted_dict = {key: id2label[key] for key in sorted(id2label.keys())}
|
||
|
sorted_dict = {key: inverse_dict[key] for key in sorted(inverse_dict.keys())}
|
||
|
|
||
|
# %%
|
||
|
sorted_dict
|
||
|
|
||
|
# %%
|
||
|
rule_set ={
|
||
|
'.NET': [497,482,484,487,485,486,483],
|
||
|
'apache': [6,634,501,646,259,7,8,9,375,697,10,11,12,260,376],
|
||
|
'C++': [583,306],
|
||
|
'CA': [290,22,23,24,25],
|
||
|
'CSS': [307,377],
|
||
|
'Cisco': [28,420,29],
|
||
|
'Citrix': [563,565,31,292,291,564,32,30],
|
||
|
'coldfusion': [311,37],
|
||
|
'eclipse': [46,622,641,456],
|
||
|
'xml': [596, 318],
|
||
|
'xsl': [319,320],
|
||
|
'HP': [59,293,60,61,58],
|
||
|
'http': [505,543],
|
||
|
'IBM': [698,63,64,649,65,666,294,66,265,328,67,330,68,458,69,70,71,72,672,73,295,250,605],
|
||
|
'IBM BigFix': [62,457],
|
||
|
'IBM ILOG': [253,255,254,256,252],
|
||
|
'IBM Tivoli': [606,459,76,77,604,460,461,462,463,79],
|
||
|
'IBM WebSphere': [80,82,83,81],
|
||
|
'IBM i': [424,329],
|
||
|
'IDMS': [667,668],
|
||
|
'IIS': [609,490,489,491],
|
||
|
'JBoss': [268,492,493],
|
||
|
'JavaScript': [589,405,406,407,408,409,411,412,413,415,410,414],
|
||
|
'Java': [506,523,584,378,379,380,381,384,382,383,385,386,387,392,393,388,333,389,334,390,391,335,336,394,395,396,397,398,399,400,401,402,403,404],
|
||
|
'KVS': [549,550,551],
|
||
|
'Linux': [576,454,427,428,429,453,430,432,433,434,435,436,431,437],
|
||
|
'MS SQL': [581,121,466,467,465,468,469,470,471,472,473],
|
||
|
'MVS': [577,440,441],
|
||
|
'Microsoft': [99,637,100,101,102,103,104,464,105,108,106,107,109,110,111,112,113,114],
|
||
|
'Oracle': [130,131,129,132,133,135,136,298,137,140,694,141,289,675,142,145,146,143,144,147,567,148,527,281],
|
||
|
'Oracle WebLogic': [600,233],
|
||
|
'Oracle Application Server': [610,494],
|
||
|
'Oracle Database': [134,474,475,478],
|
||
|
'Oracle Hyperion': [607,138,139],
|
||
|
'Oracle WebCenter': [276,495],
|
||
|
'Pascal': [599,346],
|
||
|
'Perl': [585,348,417,349],
|
||
|
'ProjectWise': [161,162],
|
||
|
'Rational': [166,167],
|
||
|
'SAP': [173,175,695,176,676,178,179],
|
||
|
'SAP ERP': [174,476,477],
|
||
|
'SAP NetWeaver': [279,496,177],
|
||
|
'Sybase SQL Server': [190,479,480],
|
||
|
'Sysinternal Tools': [194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212],
|
||
|
'TIBCO': [218,219],
|
||
|
'TIBCO Business Works': [217,481],
|
||
|
'Tivoli': [220,251],
|
||
|
'Tortoise': [221,222],
|
||
|
'Unix': [578,445,579,447,602,590,448,449],
|
||
|
'VB': [368,369],
|
||
|
'VMware': [568,569,229,230,231],
|
||
|
'Visual Basic': [370,371,372],
|
||
|
'WebSphere': [234,285,235,286,284,601,287],
|
||
|
'Windows': [580,238,239,451,452],
|
||
|
'z': [598,608,591]
|
||
|
|
||
|
}
|
||
|
|
||
|
# %%
|
||
|
# iterate through the whole training set
|
||
|
new_df = train_df.copy()
|
||
|
for idx, row in train_df.iterrows():
|
||
|
# we iterate through each rule set, replacing any matching values in the
|
||
|
# list with the first element of the list
|
||
|
for key in rule_set.keys():
|
||
|
id = row['entity_id']
|
||
|
if (id in rule_set[key]):
|
||
|
new_df.loc[idx,('entity_id')] = rule_set[key][0]
|
||
|
# %%
|
||
|
len(set(new_df['entity_id'].to_list()))
|
||
|
|
||
|
# %%
|
||
|
new_df.to_csv('parent_train.csv')
|
||
|
|
||
|
# %%
|
||
|
# now do the same for the test data
|
||
|
# import training file
|
||
|
data_path = '../esAppMod_data_import/test.csv'
|
||
|
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||
|
|
||
|
new_df = test_df.copy()
|
||
|
for idx, row in test_df.iterrows():
|
||
|
# we iterate through each rule set, replacing any matching values in the
|
||
|
# list with the first element of the list
|
||
|
for key in rule_set.keys():
|
||
|
id = row['entity_id']
|
||
|
if (id in rule_set[key]):
|
||
|
new_df.loc[idx,('entity_id')] = rule_set[key][0]
|
||
|
|
||
|
# %%
|
||
|
new_df
|
||
|
|
||
|
# %%
|
||
|
new_df.to_csv('parent_test.csv')
|
||
|
# %%
|