Fix: changed logic in modified-postOrderTraversal to match default

postOrderTraversal
Refactor: make postOrderTraversal functions single responsibility only
This commit is contained in:
Richard Wong 2024-02-20 17:00:51 +09:00
parent 00ce484c58
commit 54b51b002d
Signed by: richard
GPG Key ID: 5BD36BA2E9EE33D0
6 changed files with 121 additions and 134 deletions

1
README.md Normal file
View File

@ -0,0 +1 @@
This branch tests the idea of using fuzzing to choose the direction of mutation

View File

@ -153,10 +153,12 @@ public:
node* get_new_node(node_type t); node* get_new_node(node_type t);
void read_from_gml(string input_file); void read_from_gml(string input_file);
int output_removed_edge_size(); int output_removed_edge_size();
vector<int> postOrderTraversal(); vector<int> return_post_order();
vector<int> mutatedPostOrderTraversal(vector<int> post_order); void postOrderTraversal();
void guidedPostOrderTraversal(vector<int> post_order); void guidedPostOrderTraversal(vector<int> post_order);
void set_post_order(vector<int> post_order); void mutatedPostOrderTraversal(vector<int> post_order);
// void set_post_order(vector<int> post_order);
void print_post_order();
void sort_adj_list(); void sort_adj_list();
void determine_edges(); void determine_edges();
void back_edge_traversal(); void back_edge_traversal();

View File

@ -22,43 +22,25 @@ int compute_removed_edge_size(string input_file, vector<int> post_order);
vector<int> generate_post_order(string input_file); vector<int> generate_post_order(string input_file);
vector<int> generate_mutated_post_order(string input_file, vector<int> post_order); vector<int> generate_mutated_post_order(string input_file, vector<int> post_order);
double temp_decay(int k, int k_max) {
return 1.0 - ((k + 1.0) / (k_max));
}
vector<int> sa_solve(string input_file, int k_max) { vector<int> repeated_mutation(string input_file, int k_max) {
// create sampling function
std::random_device rd;
std::mt19937 rng(rd());
std::uniform_real_distribution<> distribution(0.0, 1.0);
// generate first state
vector<int> state_old = generate_post_order(input_file); vector<int> state_old = generate_post_order(input_file);
vector<int> state_new; vector<int> state_new;
int e_old = compute_removed_edge_size(input_file, state_old); int num_removed_edges;
int e_new = 0;
int delta = 0;
// initialize terms
double temp;
for (int k = 0; k < k_max; ++k) { for (int k = 0; k < k_max; ++k) {
temp = START_TEMP * temp_decay(k, k_max);
state_new = generate_mutated_post_order(input_file, state_old); state_new = generate_mutated_post_order(input_file, state_old);
e_new = compute_removed_edge_size(input_file, state_new); num_removed_edges = compute_removed_edge_size(input_file, state_new);
delta = e_new - e_old;
if (std::exp( -(delta) / temp) > distribution(rng)) {
state_old = state_new;
e_old = e_new;
}
} }
return state_new;
return state_old;
} }
void test_correctness(string input_file) {
vector<int> state_old = generate_post_order(input_file);
int num_removed_edges;
num_removed_edges = compute_removed_edge_size(input_file, state_old);
}
int get_graph_size(string input_file) { int get_graph_size(string input_file) {
ogdf::Graph G; ogdf::Graph G;
@ -80,14 +62,15 @@ int main(int argc, char* argv[]) {
int k_max = std::stoi(argv[2]); int k_max = std::stoi(argv[2]);
// generate order here // generate order here
vector<int> post_order = sa_solve(input_file, k_max); // vector<int> post_order = repeated_mutation(input_file, k_max);
test_correctness(input_file);
// std::copy(post_order.begin(), post_order.end(), std::ostream_iterator<int>(std::cout, " ")); // // print final order and number of edges
// // print post_order
// std::copy(post_order.begin(), post_order.end(), std::ostream_iterator<int>(std::cout, ","));
// std::cout << std::endl; // std::cout << std::endl;
// int removed_edges = compute_removed_edge_size(input_file, post_order);
// print order // std::cout << "Number of removed edges: " << removed_edges << std::endl;
int removed_edges = compute_removed_edge_size(input_file, post_order);
std::cout << "Number of removed edges: " << removed_edges << std::endl;
return 0; return 0;
} }

View File

@ -3,6 +3,9 @@
//----------------------------------------------------------------------------------- //-----------------------------------------------------------------------------------
#include "mps.h" #include "mps.h"
#include <iterator>
// #define DEBUG
// constructor can be made empty // constructor can be made empty
maximal_planar_subgraph_finder::maximal_planar_subgraph_finder() {} maximal_planar_subgraph_finder::maximal_planar_subgraph_finder() {}
@ -19,17 +22,8 @@ maximal_planar_subgraph_finder::get_new_node(node_type t) {
return _new_node_list[_new_node_list.size()-1]; return _new_node_list[_new_node_list.size()-1];
} }
//Determine the post-order-list by a DFS-traversal.
vector<int> vector<int>
maximal_planar_subgraph_finder::postOrderTraversal() { maximal_planar_subgraph_finder::return_post_order() {
node::init_mark();
int postOrderID = 0;
for (int i = 0; i < _node_list.size(); ++i) {
if (!_node_list[i]->is_marked()) {
_node_list[i]->DFS_visit(_post_order_list, postOrderID);
}
}
vector<int> post_order; vector<int> post_order;
for (int i = 0; i < _post_order_list.size(); ++i) { for (int i = 0; i < _post_order_list.size(); ++i) {
post_order.push_back(_post_order_list[i]->node_id()); post_order.push_back(_post_order_list[i]->node_id());
@ -37,9 +31,24 @@ maximal_planar_subgraph_finder::postOrderTraversal() {
return post_order; return post_order;
} }
//Determine the post-order-list by a DFS-traversal. //Determine the post-order-list by a DFS-traversal.
void void
maximal_planar_subgraph_finder::postOrderTraversal() {
node::init_mark();
// always start with node 0
int postOrderID = 0;
for (int i = 0; i < _node_list.size(); ++i) {
if (!_node_list[i]->is_marked()) {
_node_list[i]->DFS_visit(_post_order_list, postOrderID);
}
}
}
// Determine the post-order-list by a DFS-traversal.
// take in a post-order argument then traces the graph in the same order
// return is by reference via _post_order_list
void
maximal_planar_subgraph_finder::guidedPostOrderTraversal(vector<int> post_order) { maximal_planar_subgraph_finder::guidedPostOrderTraversal(vector<int> post_order) {
node::init_mark(); node::init_mark();
@ -62,7 +71,6 @@ maximal_planar_subgraph_finder::guidedPostOrderTraversal(vector<int> post_order)
} }
break; break;
} }
// std::cout << _node_list[i]->node_id() << ", " << !_node_list[i]->is_marked() << std::endl;
if (!_node_list[i]->is_marked()) if (!_node_list[i]->is_marked())
{ {
_node_list[i]->guided_DFS_visit(_post_order_list, _node_list, postOrderID, rev_post_order); _node_list[i]->guided_DFS_visit(_post_order_list, _node_list, postOrderID, rev_post_order);
@ -72,7 +80,9 @@ maximal_planar_subgraph_finder::guidedPostOrderTraversal(vector<int> post_order)
} }
//Determine the post-order-list by a DFS-traversal. //Determine the post-order-list by a DFS-traversal.
vector<int> // take in a post-order argument then traces the graph in the same order
// return is by reference via _post_order_list
void
maximal_planar_subgraph_finder::mutatedPostOrderTraversal(vector<int> post_order) { maximal_planar_subgraph_finder::mutatedPostOrderTraversal(vector<int> post_order) {
node::init_mark(); node::init_mark();
@ -105,6 +115,8 @@ maximal_planar_subgraph_finder::mutatedPostOrderTraversal(vector<int> post_order
int end_condition = _node_list.size(); int end_condition = _node_list.size();
// this loop assumes start is not from 0
// if starting index is not 0, it just increments and loops around until it encounters the element before it
while (true) while (true)
{ {
if (((start > 0) && (i == (start - 1))) || ((start == 0 ) && (i == end_condition - 1))) if (((start > 0) && (i == (start - 1))) || ((start == 0 ) && (i == end_condition - 1)))
@ -115,35 +127,34 @@ maximal_planar_subgraph_finder::mutatedPostOrderTraversal(vector<int> post_order
} }
break; break;
} }
// std::cout << _node_list[i]->node_id() << ", " << !_node_list[i]->is_marked() << std::endl;
if (!_node_list[i]->is_marked()) if (!_node_list[i]->is_marked())
{ {
_node_list[i]->mutated_DFS_visit(_post_order_list, _node_list, postOrderID, rev_post_order, mutate_point); _node_list[i]->mutated_DFS_visit(_post_order_list, _node_list, postOrderID, rev_post_order, mutate_point);
} }
i = (i + 1) % end_condition; i = (i + 1) % end_condition;
} }
vector<int> return_order;
for (int i = 0; i < _post_order_list.size(); ++i) {
return_order.push_back(_post_order_list[i]->node_id());
}
// we have to reverse the order as we add to list in the forward direction of recursion
// unlike that of previous methods where we add to list in the return direction of recursion
std::reverse(return_order.begin(), return_order.end());
return return_order;
} }
//Set the post-order-list via given list
void void
maximal_planar_subgraph_finder::set_post_order(vector<int> post_order) { maximal_planar_subgraph_finder::print_post_order() {
for (int i = 0; i < _node_list.size(); ++i) { int current_index;
_node_list[i]->set_post_order_index(post_order[i]); for (int i = 0; i < _post_order_list.size(); ++i) {
current_index = _post_order_list[i]->node_id();
std::cout << current_index << ",";
} }
std::cout << std::endl;
} }
// this function is not used anywhere
//Set the post-order-list via given list
// void
// maximal_planar_subgraph_finder::set_post_order(vector<int> post_order) {
// for (int i = 0; i < _node_list.size(); ++i) {
// _node_list[i]->set_post_order_index(post_order[i]);
// }
// }
//Sort the adj-list of every node increasingly according to post-order-index. //Sort the adj-list of every node increasingly according to post-order-index.
void void
maximal_planar_subgraph_finder::sort_adj_list() { maximal_planar_subgraph_finder::sort_adj_list() {

View File

@ -5,6 +5,8 @@
#include "mps.h" #include "mps.h"
#include <ogdf/fileformats/GraphIO.h> #include <ogdf/fileformats/GraphIO.h>
#define DEBUG
//----------------------------------------------------------------------------------- //-----------------------------------------------------------------------------------
// Finding MPS // Finding MPS
//----------------------------------------------------------------------------------- //-----------------------------------------------------------------------------------
@ -37,6 +39,11 @@ vector<int> generate_mutated_post_order(string input_file, vector<int> post_orde
int maximal_planar_subgraph_finder::find_mps(string input_file) { int maximal_planar_subgraph_finder::find_mps(string input_file) {
read_from_gml(input_file); read_from_gml(input_file);
postOrderTraversal(); postOrderTraversal();
#ifdef DEBUG
print_post_order();
#endif
sort_adj_list(); sort_adj_list();
determine_edges(); determine_edges();
back_edge_traversal(); back_edge_traversal();
@ -45,12 +52,25 @@ int maximal_planar_subgraph_finder::find_mps(string input_file) {
vector<int> maximal_planar_subgraph_finder::generate_post_order(string input_file) { vector<int> maximal_planar_subgraph_finder::generate_post_order(string input_file) {
read_from_gml(input_file); read_from_gml(input_file);
return postOrderTraversal(); postOrderTraversal();
#ifdef DEBUG
print_post_order();
#endif
return return_post_order();
} }
// result of this will be used as input to "compute_removed_edge_size"
vector<int> maximal_planar_subgraph_finder::generate_mutated_post_order(string input_file, vector<int> post_order) { vector<int> maximal_planar_subgraph_finder::generate_mutated_post_order(string input_file, vector<int> post_order) {
read_from_gml(input_file); read_from_gml(input_file);
return mutatedPostOrderTraversal(post_order); mutatedPostOrderTraversal(post_order);
#ifdef DEBUG
print_post_order();
#endif
return return_post_order();
} }
@ -58,18 +78,14 @@ int maximal_planar_subgraph_finder::compute_removed_edge_size(string input_file,
read_from_gml(input_file); read_from_gml(input_file);
guidedPostOrderTraversal(post_order); guidedPostOrderTraversal(post_order);
// let's reverse the order // set post_order_index
std::reverse(_post_order_list.begin(), _post_order_list.end());
// then set post_order_index
for (int i = 0; i < _post_order_list.size(); ++i) { for (int i = 0; i < _post_order_list.size(); ++i) {
_node_list[_post_order_list[i]->node_id()]->set_post_order_index(i); _node_list[_post_order_list[i]->node_id()]->set_post_order_index(i);
} }
// std::cout << "check order of duplicated traversal" << std::endl; #ifdef DEBUG
// for (int i = 0; i < _post_order_list.size(); ++i) { print_post_order();
// std::cout << _post_order_list[i]->node_id() << " "; #endif
// }
// std::cout << std::endl;
sort_adj_list(); sort_adj_list();
determine_edges(); determine_edges();

View File

@ -4,6 +4,8 @@
#include "mps.h" #include "mps.h"
// #define DEBUG
//----------------------------------------------------------------------------------- //-----------------------------------------------------------------------------------
// CONSTRUCTOR // CONSTRUCTOR
//----------------------------------------------------------------------------------- //-----------------------------------------------------------------------------------
@ -69,32 +71,17 @@ void node::DFS_visit(vector<node*> &dfsList, int &index) {
void node::guided_DFS_visit(vector<node*> &dfsList, vector<node*> &node_list, int &index, vector<int> rev_post_order) { void node::guided_DFS_visit(vector<node*> &dfsList, vector<node*> &node_list, int &index, vector<int> rev_post_order) {
mark(); mark();
// you will want to sort the neighbor nodes by the order they appear in the rev_post_order
// purpose of this block: create list of neighbors
vector<node *> neighbor_list; vector<node *> neighbor_list;
std::unordered_set<int> neighbor_set;
// create an unordered set to efficiently check for presence of an element
for (int i = 0; i < _adj_list.size(); ++i) { for (int i = 0; i < _adj_list.size(); ++i) {
neighbor_set.insert(_adj_list[i]->node_id()); // we get the neighbors via _adj_list
// we get the id's of the neighbor nodes, then we use the id's to get the actual nodes via node_list
// node_list maps id to the actual node
neighbor_list.push_back(node_list[_adj_list[i]->node_id()]);
} }
// when an element in rev_post_order is found in neighbor_set, we add that to neighbor_list
for (int i = 0; i < rev_post_order.size(); ++i) {
if (neighbor_set.find(rev_post_order[i]) != neighbor_set.end()) {
neighbor_list.push_back(node_list[rev_post_order[i]]);
}
}
// print the neighbors
// std::cout << "current index: " << this->node_id() << std::endl;
// for (int i = 0; i < neighbor_list.size(); ++i) {
// std::cout << neighbor_list[i]->node_id() << " ";
// }
// std::cout << std::endl;
set_post_order_index(index);
dfsList.push_back(this);
++index;
for (int i = 0; i < neighbor_list.size(); ++i) { for (int i = 0; i < neighbor_list.size(); ++i) {
if (!neighbor_list[i]->is_marked()) { if (!neighbor_list[i]->is_marked()) {
@ -102,38 +89,29 @@ void node::guided_DFS_visit(vector<node*> &dfsList, vector<node*> &node_list, in
neighbor_list[i]->guided_DFS_visit(dfsList, node_list, index, rev_post_order); neighbor_list[i]->guided_DFS_visit(dfsList, node_list, index, rev_post_order);
} }
} }
set_post_order_index(index);
dfsList.push_back(this);
++index;
} }
void node::mutated_DFS_visit(vector<node*> &dfsList, vector<node*> &node_list, int &index, vector<int> rev_post_order, int &mutate_point) { void node::mutated_DFS_visit(vector<node*> &dfsList, vector<node*> &node_list, int &index, vector<int> rev_post_order, int &mutate_point) {
// mark current node
mark(); mark();
// you will want to sort the neighbor nodes by the order they appear in the rev_post_order
// purpose of this block: create list of neighbors
vector<node *> neighbor_list; vector<node *> neighbor_list;
std::unordered_set<int> neighbor_set;
// create an unordered set to efficiently check for presence of an element
for (int i = 0; i < _adj_list.size(); ++i) { for (int i = 0; i < _adj_list.size(); ++i) {
neighbor_set.insert(_adj_list[i]->node_id()); // we get the neighbors via _adj_list
// we get the id's of the neighbor nodes, then we use the id's to get the actual nodes via node_list
// node_list maps id to the actual node
neighbor_list.push_back(node_list[_adj_list[i]->node_id()]);
} }
// when an element in rev_post_order is found in neighbor_set, we add that to neighbor_list
for (int i = 0; i < rev_post_order.size(); ++i) {
if (neighbor_set.find(rev_post_order[i]) != neighbor_set.end()) {
neighbor_list.push_back(node_list[rev_post_order[i]]);
}
}
// print the neighbors
// std::cout << "current index: " << this->node_id() << std::endl;
// for (int i = 0; i < neighbor_list.size(); ++i) {
// std::cout << neighbor_list[i]->node_id() << " ";
// }
// std::cout << std::endl;
set_post_order_index(index);
dfsList.push_back(this);
++index;
// since we increment the index before this line, the current index is "index - 1"
// if the current index matches the mutate_point, then we know this is the cycle to mutate
if (index - 1 == mutate_point) { if (index - 1 == mutate_point) {
// Create a random number generator and seed it // Create a random number generator and seed it
// std::cout << "mutated at index: " << index - 1<< "and at mutate point: " << mutate_point << std::endl; // std::cout << "mutated at index: " << index - 1<< "and at mutate point: " << mutate_point << std::endl;
@ -141,14 +119,6 @@ void node::mutated_DFS_visit(vector<node*> &dfsList, vector<node*> &node_list, i
std::mt19937 rng(rd()); std::mt19937 rng(rd());
// Use std::shuffle to shuffle the elements in the vector // Use std::shuffle to shuffle the elements in the vector
std::shuffle(neighbor_list.begin(), neighbor_list.end(), rng); std::shuffle(neighbor_list.begin(), neighbor_list.end(), rng);
// // print the neighbors
// std::cout << "order after mutation: " << std::endl;
// std::cout << "current index: " << this->node_id() << std::endl;
// for (int i = 0; i < neighbor_list.size(); ++i)
// {
// std::cout << neighbor_list[i]->node_id() << " ";
// }
// std::cout << std::endl;
} }
for (int i = 0; i < neighbor_list.size(); ++i) for (int i = 0; i < neighbor_list.size(); ++i)
@ -159,6 +129,10 @@ void node::mutated_DFS_visit(vector<node*> &dfsList, vector<node*> &node_list, i
neighbor_list[i]->mutated_DFS_visit(dfsList, node_list, index, rev_post_order, mutate_point); neighbor_list[i]->mutated_DFS_visit(dfsList, node_list, index, rev_post_order, mutate_point);
} }
} }
set_post_order_index(index);
dfsList.push_back(this);
++index;
} }