169 lines
6.8 KiB
Python
169 lines
6.8 KiB
Python
# Paul Gasper, NREL
|
|
# This model is fit to Panasonic 18650B NCA-Gr cells.
|
|
# Calendar data is reported by Keil et al (https://dx.doi.org/10.1149/2.0411609jes)
|
|
# Cycling data is reported by Preger et al (https://doi.org/10.1149/1945-7111/abae37) and
|
|
# is available at batteryarchive.com.
|
|
# I'm not aware of any study conducting both calendar aging and cycle aging of these cells.
|
|
|
|
import numpy as np
|
|
from functions.extract_stressors import extract_stressors
|
|
from functions.state_functions import update_power_state
|
|
|
|
# EXPERIMENTAL AGING DATA SUMMARY:
|
|
# Calendar aging widely varied SOC at 25, 40, and 50 Celsius. 300 days max.
|
|
# Cycle aging varied temperature and C-rates, and DOD. Some accelerating fade is observed
|
|
# at room temperature and high DODs but isn't modeled well here. That's not a huge problem,
|
|
# because the modeled lifetime is quite short anyways.
|
|
|
|
# MODEL SENSITIVITY
|
|
# The model predicts degradation rate versus time as a function of temperature and average
|
|
# state-of-charge and degradation rate versus equivalent full cycles (charge-throughput) as
|
|
# a function of C-rate, temperature, and depth-of-discharge (DOD dependence is assumed to be linear, no aging data)
|
|
|
|
# MODEL LIMITATIONS
|
|
# Cycle degradation predictions WILL NOT PREDICT KNEE-POINT due to limited data.
|
|
# Cycle aging is only modeled at 25, 35, and 45 Celsius, PREDICTIONS OUTSIDE THIS
|
|
# TEMPERATURE RANGE MAY BE OPTIMISTIC.
|
|
|
|
class Nca_Gr_Panasonic3Ah_Battery:
|
|
|
|
def __init__(self):
|
|
# States: Internal states of the battery model
|
|
self.states = {
|
|
'qLoss_t': np.array([0]),
|
|
'qLoss_EFC': np.array([0]),
|
|
}
|
|
|
|
# Outputs: Battery properties derived from state values
|
|
self.outputs = {
|
|
'q': np.array([1]),
|
|
'q_t': np.array([1]),
|
|
'q_EFC': np.array([1]),
|
|
}
|
|
|
|
# Stressors: History of stressors on the battery
|
|
self.stressors = {
|
|
'delta_t_days': np.array([np.nan]),
|
|
't_days': np.array([0]),
|
|
'delta_efc': np.array([np.nan]),
|
|
'efc': np.array([0]),
|
|
'TdegK': np.array([np.nan]),
|
|
'soc': np.array([np.nan]),
|
|
'dod': np.array([np.nan]),
|
|
'Crate': np.array([np.nan]),
|
|
}
|
|
|
|
# Rates: History of stressor-dependent degradation rates
|
|
self.rates = {
|
|
'k_cal': np.array([np.nan]),
|
|
'k_cyc': np.array([np.nan]),
|
|
}
|
|
|
|
# Nominal capacity
|
|
@property
|
|
def _cap(self):
|
|
return 3.2
|
|
|
|
# Define life model parameters
|
|
@property
|
|
def _params_life(self):
|
|
return {
|
|
# Capacity fade parameters
|
|
'qcal_A': 75.4,
|
|
'qcal_B': -3.34e+03,
|
|
'qcal_C': 353,
|
|
'qcal_p': 0.512,
|
|
'qcyc_A': 1.86e-06,
|
|
'qcyc_B': 4.74e-11,
|
|
'qcyc_C': 0.000177,
|
|
'qcyc_D': 3.34e-11,
|
|
'qcyc_E': 2.81e-09,
|
|
'qcyc_p': 0.699,
|
|
}
|
|
|
|
# Battery model
|
|
def update_battery_state(self, t_secs, soc, T_celsius):
|
|
# Update the battery states, based both on the degradation state as well as the battery performance
|
|
# at the ambient temperature, T_celsius
|
|
# Inputs:
|
|
# t_secs (ndarry): vector of the time in seconds since beginning of life for the soc_timeseries data points
|
|
# soc (ndarry): vector of the state-of-charge of the battery at each t_sec
|
|
# T_celsius (ndarray): the temperature of the battery during this time period, in Celsius units.
|
|
|
|
# Check some input types:
|
|
if not isinstance(t_secs, np.ndarray):
|
|
raise TypeError('Input "t_secs" must be a numpy.ndarray')
|
|
if not isinstance(soc, np.ndarray):
|
|
raise TypeError('Input "soc" must be a numpy.ndarray')
|
|
if not isinstance(T_celsius, np.ndarray):
|
|
raise TypeError('Input "T_celsius" must be a numpy.ndarray')
|
|
if not (len(t_secs) == len(soc) and len(t_secs) == len(T_celsius)):
|
|
raise ValueError('All input timeseries must be the same length')
|
|
|
|
self.__update_states(t_secs, soc, T_celsius)
|
|
self.__update_outputs()
|
|
|
|
def __update_states(self, t_secs, soc, T_celsius):
|
|
# Update the battery states, based both on the degradation state as well as the battery performance
|
|
# at the ambient temperature, T_celsius
|
|
# Inputs:
|
|
# t_secs (ndarry): vector of the time in seconds since beginning of life for the soc_timeseries data points
|
|
# soc (ndarry): vector of the state-of-charge of the battery at each t_sec
|
|
# T_celsius (ndarray): the temperature of the battery during this time period, in Celsius units.
|
|
|
|
# Extract stressors
|
|
delta_t_secs = t_secs[-1] - t_secs[0]
|
|
delta_t_days, delta_efc, TdegK, soc, Ua, dod, Crate, cycles = extract_stressors(t_secs, soc, T_celsius)
|
|
|
|
# Grab parameters
|
|
p = self._params_life
|
|
|
|
# Calculate the degradation coefficients
|
|
k_cal = p['qcal_A'] * np.exp(p['qcal_B']/TdegK) * np.exp(p['qcal_C']*soc/TdegK)
|
|
k_cyc = (
|
|
(p['qcyc_A'] + p['qcyc_B']*Crate + p['qcyc_C']*dod)
|
|
* (np.exp(p['qcyc_D']/TdegK) + np.exp(-p['qcyc_E']/TdegK))
|
|
)
|
|
|
|
# Calculate time based average of each rate
|
|
k_cal = np.trapz(k_cal, x=t_secs) / delta_t_secs
|
|
k_cyc = np.trapz(k_cyc, x=t_secs) / delta_t_secs
|
|
|
|
# Calculate incremental state changes
|
|
states = self.states
|
|
# Capacity
|
|
dq_t = update_power_state(states['qLoss_t'][-1], delta_t_days, k_cal, p['qcal_p'])
|
|
dq_EFC = update_power_state(states['qLoss_EFC'][-1], delta_efc, k_cyc, p['qcyc_p'])
|
|
|
|
# Accumulate and store states
|
|
dx = np.array([dq_t, dq_EFC])
|
|
for k, v in zip(states.keys(), dx):
|
|
x = self.states[k][-1] + v
|
|
self.states[k] = np.append(self.states[k], x)
|
|
|
|
# Store stressors
|
|
t_days = self.stressors['t_days'][-1] + delta_t_days
|
|
efc = self.stressors['efc'][-1] + delta_efc
|
|
stressors = np.array([delta_t_days, t_days, delta_efc, efc, np.mean(TdegK), np.mean(soc), dod, Crate])
|
|
for k, v in zip(self.stressors.keys(), stressors):
|
|
self.stressors[k] = np.append(self.stressors[k], v)
|
|
|
|
# Store rates
|
|
rates = np.array([k_cal, k_cyc])
|
|
for k, v in zip(self.rates.keys(), rates):
|
|
self.rates[k] = np.append(self.rates[k], v)
|
|
|
|
def __update_outputs(self):
|
|
# Calculate outputs, based on current battery state
|
|
states = self.states
|
|
|
|
# Capacity
|
|
q_t = 1 - states['qLoss_t'][-1]
|
|
q_EFC = 1 - states['qLoss_EFC'][-1]
|
|
q = 1 - states['qLoss_t'][-1] - states['qLoss_EFC'][-1]
|
|
|
|
# Assemble output
|
|
out = np.array([q, q_t, q_EFC])
|
|
# Store results
|
|
for k, v in zip(list(self.outputs.keys()), out):
|
|
self.outputs[k] = np.append(self.outputs[k], v) |