271 lines
12 KiB
Python
271 lines
12 KiB
Python
|
# Paul Gasper, NREL
|
||
|
import numpy as np
|
||
|
from functions.extract_stressors import extract_stressors
|
||
|
from functions.state_functions import update_power_B_state, update_sigmoid_state
|
||
|
import scipy.stats as stats
|
||
|
|
||
|
# EXPERIMENTAL AGING DATA SUMMARY:
|
||
|
# Aging test matrix varied temperature and state-of-charge for calendar aging, and
|
||
|
# varied depth-of-discharge, average state-of-charge, and C-rates for cycle aging.
|
||
|
# There is NO LOW TEMPERATURE cycling aging data, i.e., no lithium-plating induced by
|
||
|
# kinetic limitations on cell performance; CYCLING WAS ONLY DONE AT 25 CELSIUS AND 45 CELSIUS,
|
||
|
# so any model predictions at low temperature cannot incorporate low temperature degradation modes.
|
||
|
# Discharge capacity
|
||
|
|
||
|
# MODEL SENSITIVITY
|
||
|
# The model predicts degradation rate versus time as a function of temperature and average
|
||
|
# state-of-charge and degradation rate versus equivalent full cycles (charge-throughput) as
|
||
|
# a function of average state-of-charge during a cycle, depth-of-discharge, and average of the
|
||
|
# charge and discharge C-rates.
|
||
|
|
||
|
# MODEL LIMITATIONS
|
||
|
# There is no influence of TEMPERATURE on CYCLING DEGRADATION RATE due to limited data. This is
|
||
|
# NOT PHYSICALLY REALISTIC AND IS BASED ON LIMITED DATA.
|
||
|
|
||
|
class Lfp_Gr_SonyMurata3Ah_Battery:
|
||
|
# Model predicting the degradation of Sony-Murata 3 Ah LFP-Gr cylindrical cells.
|
||
|
# Data is from Technical University of Munich, reported in studies led by Maik Naumann.
|
||
|
# Capacity model identification was conducted at NREL. Resistance model is from Naumann et al.
|
||
|
# Naumann et al used an interative fitting procedure, but it was found that lower model error could be
|
||
|
# achieved by simply reoptimizing all resistance growth parameters to the entire data set.
|
||
|
# Calendar aging data source: https://doi.org/10.1016/j.est.2018.01.019
|
||
|
# Cycle aging data source: https://doi.org/10.1016/j.jpowsour.2019.227666
|
||
|
# Model identification source: https://doi.org/10.1149/1945-7111/ac86a8
|
||
|
# Degradation rate is a function of the aging stressors, i.e., ambient temperature and use.
|
||
|
# The state of the battery is updated throughout the lifetime of the cell.
|
||
|
# Performance metrics are capacity and DC resistance. These metrics change as a function of the
|
||
|
# cell's current degradation state, as well as the ambient temperature. The model predicts time and
|
||
|
# cycling dependent degradation. Cycling dependent degradation includes a break-in mechanism as well
|
||
|
# as long term cycling fade; the break-in mechanism strongly influenced results of the accelerated
|
||
|
# aging test, but is not expected to have much influence on real-world applications.
|
||
|
# Parameters to modify to change fade rates:
|
||
|
# q1_b0: rate of capacity loss due to calendar degradation
|
||
|
# q5_b0: rate of capacity loss due to cycling degradation
|
||
|
# k_ref_r_cal: rate of resistance growth due to calendar degradation
|
||
|
# A_r_cyc: rate of resistance growth due to cycling degradation
|
||
|
|
||
|
def __init__(self):
|
||
|
# States: Internal states of the battery model
|
||
|
self.states = {
|
||
|
'qLoss_LLI_t': np.array([0]),
|
||
|
'qLoss_LLI_EFC': np.array([0]),
|
||
|
'qLoss_BreakIn_EFC': np.array([1e-10]),
|
||
|
'rGain_LLI_t': np.array([0]),
|
||
|
'rGain_LLI_EFC': np.array([0]),
|
||
|
}
|
||
|
|
||
|
# Outputs: Battery properties derived from state values
|
||
|
self.outputs = {
|
||
|
'q': np.array([1]),
|
||
|
'q_LLI_t': np.array([1]),
|
||
|
'q_LLI_EFC': np.array([1]),
|
||
|
'q_BreakIn_EFC': np.array([1]),
|
||
|
'r': np.array([1]),
|
||
|
'r_LLI_t': np.array([1]),
|
||
|
'r_LLI_EFC': np.array([1]),
|
||
|
}
|
||
|
|
||
|
# Stressors: History of stressors on the battery
|
||
|
self.stressors = {
|
||
|
'delta_t_days': np.array([np.nan]),
|
||
|
't_days': np.array([0]),
|
||
|
'delta_efc': np.array([np.nan]),
|
||
|
'efc': np.array([0]),
|
||
|
'TdegK': np.array([np.nan]),
|
||
|
'soc': np.array([np.nan]),
|
||
|
'Ua': np.array([np.nan]),
|
||
|
'dod': np.array([np.nan]),
|
||
|
'Crate': np.array([np.nan]),
|
||
|
}
|
||
|
|
||
|
# Rates: History of stressor-dependent degradation rates
|
||
|
self.rates = {
|
||
|
'q1': np.array([np.nan]),
|
||
|
'q3': np.array([np.nan]),
|
||
|
'q5': np.array([np.nan]),
|
||
|
'q7': np.array([np.nan]),
|
||
|
'r_kcal': np.array([np.nan]),
|
||
|
'r_kcyc': np.array([np.nan]),
|
||
|
}
|
||
|
|
||
|
# Nominal capacity
|
||
|
@property
|
||
|
def _cap(self):
|
||
|
return 3
|
||
|
|
||
|
# Define life model parameters
|
||
|
@property
|
||
|
def _params_life(self):
|
||
|
return {
|
||
|
# Capacity fade parameters
|
||
|
'q2': 0.000130510034211874,
|
||
|
'q1_b0': 0.989687151293590, # CHANGE to modify calendar degradation rate
|
||
|
'q1_b1': -2881067.56019324,
|
||
|
'q1_b2': 8742.06309157261,
|
||
|
'q3_b0': 0.000332850281062177,
|
||
|
'q3_b1': 734553185711.369,
|
||
|
'q3_b2': -2.82161575620780e-06,
|
||
|
'q3_b3': -3284991315.45121,
|
||
|
'q3_b4': 0.00127227593657290,
|
||
|
'q8': 0.00303553871631028,
|
||
|
'q9': 1.43752162947637,
|
||
|
'q7_b0': 0.582258029148225,
|
||
|
'q7_soc_skew': 0.0583128906965484,
|
||
|
'q7_soc_width': 0.208738181522897,
|
||
|
'q7_dod_skew': -3.80744333129564,
|
||
|
'q7_dod_width': 1.16126260428210,
|
||
|
'q7_dod_growth': 25.4130804598602,
|
||
|
'q6': 1.12847759334355,
|
||
|
'q5_b0': -6.81260579372875e-06, # CHANGE to modify cycling degradation rate
|
||
|
'q5_b1': 2.59615973160844e-05,
|
||
|
'q5_b2': 2.11559710307295e-06,
|
||
|
# Resistance growth parameters
|
||
|
'k_ref_r_cal': 3.4194e-10, # CHANGE to modify calendar degradation rate
|
||
|
'Ea_r_cal': 71827,
|
||
|
'C_r_cal': -3.3903,
|
||
|
'D_r_cal': 1.5604,
|
||
|
'A_r_cyc': -0.002, # CHANGE to modify cycling degradation rate
|
||
|
'B_r_cyc': 0.0021,
|
||
|
'C_r_cyc': 6.8477,
|
||
|
'D_r_cyc': 0.91882
|
||
|
}
|
||
|
|
||
|
# Battery model
|
||
|
def update_battery_state(self, t_secs, soc, T_celsius):
|
||
|
# Update the battery states, based both on the degradation state as well as the battery performance
|
||
|
# at the ambient temperature, T_celsius
|
||
|
# Inputs:
|
||
|
# t_secs (ndarry): vector of the time in seconds since beginning of life for the soc_timeseries data points
|
||
|
# soc (ndarry): vector of the state-of-charge of the battery at each t_sec
|
||
|
# T_celsius (ndarray): the temperature of the battery during this time period, in Celsius units.
|
||
|
|
||
|
# Check some input types:
|
||
|
if not isinstance(t_secs, np.ndarray):
|
||
|
raise TypeError('Input "t_secs" must be a numpy.ndarray')
|
||
|
if not isinstance(soc, np.ndarray):
|
||
|
raise TypeError('Input "soc" must be a numpy.ndarray')
|
||
|
if not isinstance(T_celsius, np.ndarray):
|
||
|
raise TypeError('Input "T_celsius" must be a numpy.ndarray')
|
||
|
if not (len(t_secs) == len(soc) and len(t_secs) == len(T_celsius)):
|
||
|
raise ValueError('All input timeseries must be the same length')
|
||
|
|
||
|
self.__update_states(t_secs, soc, T_celsius)
|
||
|
self.__update_outputs()
|
||
|
|
||
|
def __update_states(self, t_secs, soc, T_celsius):
|
||
|
# Update the battery states, based both on the degradation state as well as the battery performance
|
||
|
# at the ambient temperature, T_celsius
|
||
|
# Inputs:
|
||
|
# t_secs (ndarry): vector of the time in seconds since beginning of life for the soc_timeseries data points
|
||
|
# soc (ndarry): vector of the state-of-charge of the battery at each t_sec
|
||
|
# T_celsius (ndarray): the temperature of the battery during this time period, in Celsius units.
|
||
|
|
||
|
# Extract stressors
|
||
|
delta_t_secs = t_secs[-1] - t_secs[0]
|
||
|
delta_t_days, delta_efc, TdegK, soc, Ua, dod, Crate, cycles = extract_stressors(t_secs, soc, T_celsius)
|
||
|
|
||
|
# Grab parameters
|
||
|
p = self._params_life
|
||
|
|
||
|
# Calculate the degradation coefficients
|
||
|
q1 = np.abs(
|
||
|
p['q1_b0']
|
||
|
* np.exp(p['q1_b1']*(1/(TdegK**2))*(Ua**0.5))
|
||
|
* np.exp(p['q1_b2']*(1/TdegK)*(Ua**0.5))
|
||
|
)
|
||
|
q3 = np.abs(
|
||
|
p['q3_b0']
|
||
|
* np.exp(p['q3_b1']*(1/(TdegK**4))*(Ua**(1/3)))
|
||
|
* np.exp(p['q3_b2']*(TdegK**3)*(Ua**(1/4)))
|
||
|
* np.exp(p['q3_b3']*(1/(TdegK**3))*(Ua**(1/3)))
|
||
|
* np.exp(p['q3_b4']*(TdegK**2)*(Ua**(1/4)))
|
||
|
)
|
||
|
q5 = np.abs(
|
||
|
p['q5_b0']
|
||
|
+ p['q5_b1']*dod
|
||
|
+ p['q5_b2']*np.exp((dod**2)*(Crate**3))
|
||
|
)
|
||
|
q7 = np.abs(
|
||
|
p['q7_b0']
|
||
|
* skewnormpdf(soc, p['q7_soc_skew'], p['q7_soc_width'])
|
||
|
* skewnormpdf(dod, p['q7_dod_skew'], p['q7_dod_width'])
|
||
|
* sigmoid(dod, 1, p['q7_dod_growth'], 1)
|
||
|
)
|
||
|
k_temp_r_cal = (
|
||
|
p['k_ref_r_cal']
|
||
|
* np.exp((-p['Ea_r_cal'] / 8.3144) * (1/TdegK - 1/298.15))
|
||
|
)
|
||
|
k_soc_r_cal = p['C_r_cal'] * (soc - 0.5)**3 + p['D_r_cal']
|
||
|
k_Crate_r_cyc = p['A_r_cyc'] * Crate + p['B_r_cyc']
|
||
|
k_dod_r_cyc = p['C_r_cyc']* (dod - 0.5)**3 + p['D_r_cyc']
|
||
|
|
||
|
# Calculate time based average of each rate
|
||
|
q1 = np.trapz(q1, x=t_secs) / delta_t_secs
|
||
|
q3 = np.trapz(q3, x=t_secs) / delta_t_secs
|
||
|
#q5 = np.trapz(q5, x=t_secs) / delta_t_secs # no time varying inputs
|
||
|
q7 = np.trapz(q7, x=t_secs) / delta_t_secs # no time varying inputs
|
||
|
k_temp_r_cal = np.trapz(k_temp_r_cal, x=t_secs) / delta_t_secs
|
||
|
k_soc_r_cal = np.trapz(k_soc_r_cal, x=t_secs) / delta_t_secs # no time varying inputs
|
||
|
#k_Crate_r_cyc = np.trapz(k_Crate_r_cyc, x=t_secs) / delta_t_secs # no time varying inputs
|
||
|
#k_dod_r_cyc = np.trapz(k_dod_r_cyc, x=t_secs) / delta_t_secs # no time varying inputs
|
||
|
|
||
|
# Calculate incremental state changes
|
||
|
states = self.states
|
||
|
# Capacity
|
||
|
dq_LLI_t = update_sigmoid_state(states['qLoss_LLI_t'][-1], delta_t_days, q1, p['q2'], q3)
|
||
|
dq_LLI_EFC = update_power_B_state(states['qLoss_LLI_EFC'][-1], delta_efc, q5, p['q6'])
|
||
|
if delta_efc / delta_t_days > 2: # only evalaute if more than 2 full cycles per day
|
||
|
dq_BreakIn_EFC = update_sigmoid_state(states['qLoss_BreakIn_EFC'][-1], delta_efc, q7, p['q8'], p['q9'])
|
||
|
else:
|
||
|
dq_BreakIn_EFC = 0
|
||
|
|
||
|
# Resistance
|
||
|
dr_LLI_t = k_temp_r_cal * k_soc_r_cal * delta_t_secs
|
||
|
dr_LLI_EFC = k_Crate_r_cyc * k_dod_r_cyc * delta_efc / 100
|
||
|
|
||
|
# Accumulate and store states
|
||
|
dx = np.array([dq_LLI_t, dq_LLI_EFC, dq_BreakIn_EFC, dr_LLI_t, dr_LLI_EFC])
|
||
|
for k, v in zip(states.keys(), dx):
|
||
|
x = self.states[k][-1] + v
|
||
|
self.states[k] = np.append(self.states[k], x)
|
||
|
|
||
|
# Store stressors
|
||
|
t_days = self.stressors['t_days'][-1] + delta_t_days
|
||
|
efc = self.stressors['efc'][-1] + delta_efc
|
||
|
stressors = np.array([delta_t_days, t_days, delta_efc, efc, np.mean(TdegK), np.mean(soc), np.mean(Ua), dod, Crate])
|
||
|
for k, v in zip(self.stressors.keys(), stressors):
|
||
|
self.stressors[k] = np.append(self.stressors[k], v)
|
||
|
|
||
|
# Store rates
|
||
|
rates = np.array([q1, q3, q5, q7, k_temp_r_cal * k_soc_r_cal, k_Crate_r_cyc * k_dod_r_cyc])
|
||
|
for k, v in zip(self.rates.keys(), rates):
|
||
|
self.rates[k] = np.append(self.rates[k], v)
|
||
|
|
||
|
def __update_outputs(self):
|
||
|
# Calculate outputs, based on current battery state
|
||
|
states = self.states
|
||
|
p = self._params_life
|
||
|
|
||
|
# Capacity
|
||
|
q_LLI_t = 1 - states['qLoss_LLI_t'][-1]
|
||
|
q_LLI_EFC = 1 - states['qLoss_LLI_EFC'][-1]
|
||
|
q_BreakIn_EFC = 1 - states['qLoss_BreakIn_EFC'][-1]
|
||
|
q = 1 - states['qLoss_LLI_t'][-1] - states['qLoss_LLI_EFC'][-1] - states['qLoss_BreakIn_EFC'][-1]
|
||
|
|
||
|
# Resistance
|
||
|
r_LLI_t = 1 + states['rGain_LLI_t'][-1]
|
||
|
r_LLI_EFC = 1 + states['rGain_LLI_EFC'][-1]
|
||
|
r = 1 + states['rGain_LLI_t'][-1] + states['rGain_LLI_EFC'][-1]
|
||
|
|
||
|
# Assemble output
|
||
|
out = np.array([q, q_LLI_t, q_LLI_EFC, q_BreakIn_EFC, r, r_LLI_t, r_LLI_EFC])
|
||
|
# Store results
|
||
|
for k, v in zip(list(self.outputs.keys()), out):
|
||
|
self.outputs[k] = np.append(self.outputs[k], v)
|
||
|
|
||
|
def sigmoid(x, alpha, beta, gamma):
|
||
|
return 2*alpha*(1/2 - 1/(1 + np.exp((beta*x)**gamma)))
|
||
|
|
||
|
def skewnormpdf(x, skew, width):
|
||
|
x_prime = (x-0.5)/width
|
||
|
return 2 * stats.norm.pdf(x_prime) * stats.norm.cdf(skew * (x_prime))
|